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Introduction 
Louis Lyons writes in the preface of his book ‘Statistics for Nuclear and Particle Physicists’ 
(Lyons 1986) that ‘one cannot learn statistics simply by reading a book on the subject’. This 
applies even more so to a wider field as we use the term ‘stochastics’1 here. Therefore we 
must be content with summarizing the relevant facts of probability and statistics and pointing 
out possible connections with nuclear measurements. As regards sampling distributions, 
parameter estimation etc. we refer to the above monograph as well as to Press et al. 1999. We 
will only make an exception with the 2 distribution, which is a valuable goodness-of-fit tool 
in nuclear spectroscopy. We will also cite a few examples of the nuclear applications of 
stochastic processes, a field usually excluded from short studies of this type. 

Nuclear aspects (as well as some other important points of reference) will be phrased in the 
forms of remarks numbered like this: (#1), (#2), etc. Such remarks also serve occasionally as 
interface between the (mathematical) terminology used in this text and the terminologies used 
by other authors coming from different fields of nuclear science. The numbering of the 
remarks may also help to follow a train of thought that is unfolded over several chapters and 
sections. 

1. Distributions of Random Variables 
To establish uniform notation and to provide the reader with a convenient 

reference/vocabulary we will cite some of the concepts and formulae of probability theory and 
statistics that we will use later. 

 

1.1. Measures of the ‘location’ of a distribution 

Expected value. Among the location parameters, designed to show where the ‘bulk’ of a 
distribution is concentrated, the expected value (or, as we will alternatively call it, the mean) 
is considered as standard (provided that it exists). We will usually denote it by . If we want 
to make it clear that we are talking about the expected value of the random variable X, then 
we will use the notation E(X). Further notations used in the same sense are X  and X. 

(#1) Frequently used synonyms for the expected value/mean are expectation value, 
mathematical expectation or just expectation. In physics and other fields of science (except 
mathematics), the expected value is often referred to, in a rather careless way, as ‘average’, 
but we will reserve this term for the estimate of the mean as defined by Eq. (29). In physics, it 
is also customary to use the symbol X  for the mean, but we will reserve the horizontal 
overbar to denote the sample mean, in other words, the ‘real’ average. 

The expected value of a discrete distribution is calculated from its mass function 
p(x)  P(X = x), where P means probability. The formula is: 

 



i

ii pxXE )(  (1) 

                                                           
1 The term ‘stochastics’ in the title as we mean it roughly translates to ‘random features’. So it refers to anything 
related to probability theory, statistics and, of course, stochastic processes. Hans-Otto Georgii defines 
‘stochastics’ as ‘a term comprising both probability theory and statistics’ in Footnote 1 of his book titled 
‘Stochastics: Introduction to Probability and Statistics’ (Georgii 2008). 
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where pi is the weight of the ith spectrum point2 xi. For spectrum points P(X = xi)  pi. If x is 
not a spectrum point, then P(X = x) = 0. 

The distribution function of discrete distributions is calculated from the following sum: 

 



xxi

i

i

pxF
:

)(  (2) 

For normalized distributions that we are dealing with: F() = 1. 
Integral valued random variables are an important class of discrete distributions. Their 

spectra consist of the integers: 0, 1, 2, … The expected value is: 

 





0

)(
i

ipiXE . (3) 

For continuous distributions the expected value of X is calculated from the density 
function f as follows: 

 




 xxfxXE d)()( . (4) 

The distribution function of continuous distributions is calculated from the following 
integral: 

 



x

uufxF d)()( . (5) 

For normalized distributions (that we are dealing with) again we have: F() = 1. 
It follows from Eq. (5) that the density function is the derivative of the distribution 

function: 

 
x

xF
xf

d

)(d
)(  . (6) 

(#2) Note that in various fields of science, when people talk about averaging a physical 
quantity what they usually mean is calculating the expected value of that quantity (considered 
but not necessarily declared as a random variable). The truth is revealed by the fact that they 
use formulae like Eqs. (1) and (4) for those calculations. The mass function and the density 
function are often not distinguished either, but they are referred to by the same expression like 
probability density or differential distribution function3 and sometimes, rather loosely, 
‘distribution function’4 or just ‘distribution’5. The ‘distributions’ they do their ‘averaging’ 

                                                           
2 The expression ‘spectrum point’ refers to any of the ‘allowed’ values of a discrete random variable in this 
context, and therefore it has nothing to do with the nuclear spectra discussed in Chapter 5. 
3 The explanation of the adjective ‘differential’ is made clear by Eq. (6). 
4 If the density function or the mass function is referred to as ‘distribution function’, then the ‘real’ distribution 
function is normally called integral distribution function. The reason for the name is clear from Eq. (5). 
5 As a matter of fact, very often, no reference is made to any distribution at all, although careful analysis of the 
problem reveals that some of the quantities are un-normalized density functions. As an example we mention the 
various quantities—actually different types of joint density functions of multivariate distributions—all referred to 
by the same term neutron flux and denoted by the same symbol (either ,  or ) no matter how many and which 
of the possible variables (space coordinates, solid angle, speed or energy or, alternatively, lethargy) are 
considered or made disappear by integration. To make things even more confusing, the only related quantity 
‘defined’ by IUPAP bears the name neutron flux density, (dimension: number of neutrons per square centimeter 
per second), although this is the least ‘density-function-like’ of the whole family of related quantities. Apropos of 
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with are in fact un-normalized density functions most of the time. That is, in the continuous 
case, e.g., the ‘averaging’ in physics etc. typically goes like this: 

 


 








  xxgx
A

xxg

xxgx

x d)(
1

d)(

d)(

. (7) 

where A−1 is called the normalizing factor converting the un-normalized density function g(x) 
to the normalized one, f (x) = A−1 g(x), for which: 

 1d)(
1

d)(  






 A

A
xxg

A
xxf . (8) 

as it should be. (Needless to say that the integration limits can be different from those 
indicated.) 

(#3) Note also that Eq. (7) is written in the way as is usually done outside mathematics, i.e., 
the symbol x is used both for denoting the random variable (on the left) and for indicating the 
assumed values of that same variable (on the right). (According to the convention we try to 
follow in this text, the notation should be X on the left.) However, this does not affect the 
results of such calculations at all, only the notation is somewhat confusing (to a mathematician 
anyway), but that is how most people do it in practice.6 

(#4) Another type of ‘averaging’ to be mentioned here is actually beyond the scope of this 
text. In quantum physics, the most common symbolism for the calculation of the expected 
value of a physical quantity q (characterized by the operator q) in the quantum state described 
by the (complex) wave function  (r) is this: 

   Vq d qq . (9) 

where the integration goes by the volume element dV (over the whole space) and   is the 
complex conjugate of . Here the product   is referred to as probability density too. It is 
indeed normalized to 1 as one would rightly expect from a density function: 

 1d   V . (10) 

Median. The median X1/2 is the point along the x axis which represents the middle of the 
distribution in the sense that X values smaller and greater than X1/2 are equally probable. For a 
continuous distribution this is the point where the distribution function F(x) reaches half of the 
maximum: 

 
2

1
)( 2/1 XF . (11) 

(#5) As a familiar example of the median in nuclear science we should mention the half-life 
T1/2 of a radionuclide. (See Subsection 3.4.1 as well as the right-hand panels in FIGURE 1.) 

                                                                                                                                                                                      
dimension: when in doubt as regards what type of neutron flux we are encountered with, we propose dimensional 
analysis as a guide. 
6 As a matter of fact, the author himself has to concentrate very hard not to fall out of his chosen role as a 
‘mathematician’, but he probably fails occasionally anyway. 
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For statistical samples the median is either the middle element (for an odd sample size) or 
the average of the two middle elements (for an even sample size) when the elements are 
arranged in increasing order (ordered sample). 

 

FIGURE 1. Presentation of the location and dispersion parameters of a symmetric (normal) and an 
asymmetric (exponential) distribution by the help of the density function (upper panels) and the 

distribution function (lower panels). The shaded areas under the density curves represent 10% of the 
total area under them in accordance with the meaning of the 10 percentile (X10%) and with the 

relationship between the density function and the distribution function shown by Eq. (5). Note that for 
an asymmetric distribution the ‘+’ and ‘’ error intervals measured from the mean to complementary 
values of quantiles/percentiles are different, whereas for a symmetric distribution the estimate of the 

mean obtained from a single observation of X can always be given as xx no matter how the error x 
is calculated (e.g. it can be given in terms of the 95% (+) and 5% () percentiles, or it can be set equal 

to 2 as usual). In practice, most people give their measured or calculated ‘results’ with the ‘’ 
convention without paying any attention to the actual shape of the ‘error distribution’. 

Mode. The mode m represents the local maximum (or one of the local maxima) of the 
density/mass function. It is usually referred to as the most probable value in physics and 
chemistry. (In the case of discrete distributions only the spectrum points are considered when 
looking for maxima.) If there is only one maximum, the distribution is called unimodal, if 
there are two maxima, the distribution is called bimodal etc. 

Connection between location parameters. The existence of expected value depends on 
the convergence of the sum/integral from which it is calculated. If the expected value does not 
exist, the rest of the location parameters can still be used as substitutes. (For multimodal 
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distributions the modes can be actually more useful than the single expected value because 
they also convey information about the shape of the distribution.) 

For symmetrical unimodal distributions the location parameters coincide with the center 
of symmetry c of the mass/density function: 

 cmX  2/1 . (12) 

For asymmetrical unimodal distributions (see the upper right graph in FIGURE 1) the 
following ‘rule of thumb’ is often cited: The median divides the distance between the mode 
and the mean in the approximate ratio 2:1, i.e.: 

 1:2)(:)( 2/12/1  XmX  . (13) 

1.2. Useful tools: generating function and characteristic function 

Law of the Unconscious Statistician (Goodman 1988). The expected value of the random 
variable Y obtained by the function/transformation Y = g(X) is calculated analogously to 
Eqs. (1) and (4) using the mass/density function of X: 

 



i

ii pxgXgE )())(( ; 




 xxfxgXgE d)()())(( . (14) 

Special applications of the above formula are the momenta of a distribution. The nth 
moment is defined as follows: 

 )( n
n XEM  . (15) 

In particular, the first moment is equal to the expected value: 

  )(1 XEM . (16) 

The square root of the second moment (also called mean-square)—one of the ‘effective 
means’ used—is usually referred to as the root mean square or rms: 

 )(rms 2
2 XEM  . (17) 

Beside the rms, other types of effective means can be defined by the formula 

  )]([meaneffective 1 XgEg   (18) 

where g−1 is the inverse of the function g. As a further example of the effective means we 
mention the harmonic mean, i.e. the reciprocal of the mean-reciprocal: 

 11)]([meanharmonic  XE . (19) 

(#6) Note that the reduced mass mr = m1m2/(m1+m2) of two masses m1 and m2 often cited 
in this text is exactly one half of their harmonic mean as the reader can easily check by 
assigning the same weight pi = 1/2 when applying Eq. (1) to the simple calculation. Division 
by two causes the reduced mass to deserve its name inasmuch as it is always less than either of 
the masses. On the other hand, the harmonic mean itself always lies between m1 and m2 as one 
can rightly expect from a mean of any type. (See also Section  5.4.) 
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Generating function. The generating function is defined for integral valued random 
variables the spectra of which consist of 0, 1, 2, … with weights p0, p1, p2, … The generating 
function of X is defined as the expected value of the exponential function sX: 

 





0

)()(
k

k
k

X spsEsG . (20) 

Since the distribution is normalized, G(1) = 1. The generating function (just like the mass 
function) contains all information about the distribution. For instance, the expected value and 
the variance of X (see later on) can be calculated from its derivatives as follows: 

 )1(')( GXE   ; )1()1(")(2   GXD . (21) 

Characteristic function. The characteristic function of continuous distributions is the 
expected value of the complex exponential function eiuX (where i2 = −1). In other words it is 
the Fourier transform of the density function f: 

   




 xxfEu uxuX d)(ee)( ii . (22) 

Since the distribution is normalized,  (0) = 1. The characteristic function (just like the 
density function) contains all information about the distribution. For instance, the expected 
value and the variance of X can be calculated from its derivatives as follows: 

 )0('
i

1
)(  XE ; 22 )0(")(  XD . (23) 

Both the characteristic function and the generating function represent a transformation T 
for which the following theorem holds (Korn and Korn 1968). Let X and Y denote independent 
random variables with density/mass functions fX and fY. Let fX+Y denote the density/mass 
function of the sum X+Y. Then we have: 

 )()()( YXYX fTfTfT  . (24) 

The above formula serves as a basis for the deconvolution as well as for the addition 
theorems that we will cite later on in connection with different distributions. 

 

1.3. Measures of the ‘dispersion’ of a distribution 

Variance. Among the dispersion parameters characterizing the ‘spread’ of a distribution, 
the variance is considered as standard (provided that it exists). The variance is denoted by  2 
or, if we wish to emphasize that we are talking about the variance of the random variable X, 
the notation is D2(X), Var(X), or  2

X. The variance of X is calculated as follows: 

 2
2

22 ])[()(   MXEXD . (25) 

where )( 2
2 XEM   is the second moment of X. (The first moment is M1 ≡ .) 

Standard deviation. The standard deviation of X is calculated from the variance: 

 )()( 2 XDXD  . (26) 
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Further notations:  or X. The relative deviation is the ratio of the standard deviation to the 
expected value: 

 

 rel . (27) 

Mean absolute deviation. The (mean) absolute deviation of X is: 

  ||)(D Abs  XEX . (28) 

Whenever the expected value exists, so does the absolute deviation. (The standard 
deviation may not exist, even if the expected value exists.) 

Interquantile range. This type of ‘measure’ works even if the expected value does not 
exist. 

The p quantile/fractile is a (not necessarily unique) point Xp along the x-axis, where the 
distribution function reaches a given p fraction of the maximum, i.e. where F(Xp) = p. Special 
types of quantiles are the quartiles (p = 1/4, 1/2, 3/4), the deciles (p = 0.1, 0.2, … 0.9) and the 
percentiles (p = 0.01, 0.02, … 0.99). 

Quantiles can be used for the characterization of the spread of the distribution by giving the 
distance between the points Xp and X1−p. For instance, the 10-90-percentile range means the 
difference X0.9−X0.1, where X0.1 and X0.9 are the 10 and the 90 percentile, respectively. It 
follows from the definition that about 80% of the observed values of X are supposed to lie in 
this range and about 20% outside. 

The interquartile range characterizes the spread of the distribution with the distance 
between the lower and the upper quartiles: X3/4−X1/4. (The lower, middle and the upper 
quartiles mean the 25, 50 and 75 percentiles, respectively.) 

According to the above terminology, the median can be either considered as the middle 
quartile (X2/4), or as the 50 percentile (X0.5) of the distribution. 

Halfwidth. The spread of a unimodal (continuous) distribution is sometimes characterized 
by its halfwidth meaning its full width at half maximum abbreviated as FWHM. The term 
refers to the total width of the density function (peak) between the points, where its height is 
half of the maximum. 

The relative width is the ratio of the FWHM to the expected value: FWHMrel = FWHM /. 
 

1.4. Estimation of expected value and variance 

Estimation of the expected value. The expected value is estimated by the average (also 
called the sample mean or arithmetic mean): 

 



n

k
kX

n
X

1

1̂  (29) 

where ‘ ̂ ’ reads: ‘the estimate of ’. According to Eq. (45), this estimate is unbiased, that is 

 )(XE . (30) 

(#7) As mentioned before, in physics, the horizontal overbar above a variable is often used 
to indicate its expected value, but we try to reserve this notation for the average only. 

According to Eq. (47), the uncertainty of expected-value estimation is determined by the 
variance of the average: 
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 222 11 )()( 
n

XD
n

XD  ; 
n

XD
n

XD
11 )()(   (31) 

i.e. if we want to increase the accuracy of expected-value estimation by a factor of 2, 3 or N, 
then we need to average 4, 9, N2 times as many data, respectively (see FIGURE 3). 

Estimation of variance. The variance is normally estimated by the following formula of 
the empirical variance/sample variance (note that the sample mean X  is determined from 
the same set of data as the sample variance itself): 

 2̂ s* 2 






n

k
k XX

n 1

2)(
1

1
. (32) 

The above formula looks rather surprising having the form of a ‘spoiled’ average. Its use, 
however, is justified since the variance estimate thus obtained is unbiased, i.e.: 

 E(s* 2) 2 . (33) 

If the expected value  is exactly known, then the ‘unspoiled’ averaging: 

 



n

k
kX

n
s

1

222 )(1
ˆ   (34) 

delivers the unbiased estimate for the variance. Note that the estimate calculated from Eq. (32) 
tends to be greater than that obtained from Eq. (34) by a factor of n/(n−1). Thus the difference 
is only significant when the sample size n is small. However, for small samples variance 
estimation is rather meaningless anyway. Therefore in most practical cases the choice between 
the two formulas is only a matter of taste/convenience (i.e. whichever formula is available it 
will do). The estimate of standard deviation in either case is: 

 2ˆˆ   . (35) 

Weighted average. It is a common situation that the value of a physical quantity is 
determined from different types of experiments, and the experimental values (Xk) obtained for 
those quantities have their own (different) accuracies characterized by the standard deviation 
(k). When the error distribution of each experimental value can be considered normal, then 
the maximum likelihood estimate of the expected value of the physical quantity is given by 
the following weighted average (Orear 1987): 

 







 n

k k

n

k
k

k

X

1
2

1
2

1

1

ˆ



 . (36) 

The variance of the expected-value estimate is now (Leo 1987): 

 




 n

k k

D

1
2

2

1
1

)ˆ(



 . (37) 
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It is easy to verify that if the errors of the Xk variables are equal (i.e. when the experimental 
values have been determined from the same experiment with the same experimental error 
k  ), then Eq. (36) changes over to the usual formula of simple arithmetic average as 
shown by Eq. (29) whose uncertainty is given by Eq. (31). 

 

1.5. Measures of the ‘association’ of two distributions 

In the following formulas the subscripts 1 and 2 refer to the random variables X and Y, 
respectively. The independence of the random variables X and Y means that their joint 
distribution function is equal to the product of their respective (one-dimensional) distribution 
functions: 

 )()(),( 21 yFxFyxF  . (38) 

In the case of continuous distributions, independence also means that the joint density 
function is equal to the product of the individual density functions: 

 )()(),( 21 yfxfyxf  . (39) 

The covariance of X and Y is defined as: 

 212112 )()))(((),(Cov   XYEYXEYX . (40) 

The correlation coefficient of X and Y is given by: 

 
21

12
12 )()(

),(Cov
),(


 

YDXD

YX
YXR . (41) 

The correlation coefficient is a number lying in the interval −1,+1. 
If X and Y are independent, then they are also uncorrelated, i.e.: 

 012  . (42) 

If there is a linear relationship between X and Y, then: 

 112   (43) 

i.e. the correlation reaches its maximum. More exactly, if Y = aX+b, then: 

 








0if1

0if1
12 a

a
 . (44) 

Owing to this result, one might conclude (erroneously) that whenever there is a strong 
relationship between X and Y (e.g. when Y is the function of X), then the variables must be 
correlated. However the truth is that one can find such distributions and such a strong 
(however nonlinear) relationship between X and Y, which makes them uncorrelated. 

All things considered, we can only state with certainty that if X and Y are correlated, they 
cannot be independent. 
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2. Sums and Products, Error Propagation 
In this chapter we will rehearse the ‘algebra’ of random variables from the viewpoint of 

error propagation. Convolution, central limit theorem as well as random sums (i.e. sums 
of a random number of random variables) are also included here because of their importance 
in nuclear applications. 

 

2.1. Expected value and variance of linear expressions 

Expected value of linear combinations. For any sequence of random variables as well as 
constants a and bk we can write: 

 












n

k
kk

n

k
kk baXbaE

11

 . (45) 

Corollaries: 
Expected value of a constant: ..... aaE )(  
Shift in general: ............................. )()( XEaXaE   
Change of scale in general: .......... )()( XEbbXE   
Addition/subtraction in general: . )()()( YEXEYXE   
 
Variance of the sum of random variables. We can write for any choice of two random 

variables that: 

 ),(Cov2)()()( 222 YXYDXDYXD  . (46) 

For independent random variables, the covariances are zero, thus the following formula 
holds for the variance of the linear combination of several variables: 

 












n

k
kk

n

k
kk XDbXbaD

1

22

1

2 )( . (47) 

Corollaries: 
Standard deviation of a constant: 0)( aD  
Shift in general: ............................. )()( XDXaD   

Change of scale in general:........... )()( XDbbXD   

Addition/subtraction for independence: )()()( 222 YDXDYXD   
 
Note that the variances add up even if the variables are subtracted, i.e. the errors do not 

cancel each other out. (Actually, the standard deviations of independent random variables are 
related to each other like the lengths of orthogonal vectors from which the length of the 
resultant vector is calculated according to the multidimensional version of the Pythagorean 
theorem.) 

Standardization. Standardization is a special application of the shifting and scale-
changing transformations: 

 







X

XD

XEX
Y

)(

)(
. (48) 
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The standardized random variable Y obtained this way has 0 for its expected value and 1 
for its standard deviation as well as for its variance. 

Standardization usually leads out from the distribution family of X. For instance, if X is 
distributed as Poisson, then Y is certainly not. However, if X happens to be N(, 2) normal, 
then Y is an N(0,1) standard normal random variable. For instance, the left panel in FIGURE 1 
makes use of standardization to show the properties of one-dimensional normal distributions. 
As standardization shifts the distribution such that the mean becomes 0, this transformation 
applied to the exponential distribution on the right panel in the same figure would result in a 
shifted exponential, which however is not considered an exponential distribution. (The 
exponential distribution is kind of ‘attached to the soil’ as its mode is at t = 0 by definition.) 

 

2.2. The central limit theorem 

Let X be a random variable with any distribution, having expected value  and standard 
deviation . Let Xi denote the random variable representing the ith result of n independent 
trials to observe X. (The random variables Xi are obviously independent of each other and they 
have the same distribution as X.) Then the sample mean X  (X1+X2+…+Xn)/n is 
asymptotically N(,  2/n) normal (as a random variable).  

The practical content of the central limit theorem is as follows. If we want to figure out the 
‘exact’ value of a physical quantity by calculating the average of measured data, then (1) the 
estimate thus obtained is still not completely accurate. However, (2) the accuracy is better than 
that of the original data (it is clear: otherwise the averaging would not make any sense at all). 
Moreover it is also reasonable to assume that (3) the somewhat erroneous estimates that we 
could get for the ‘exact’ value in this way are normally distributed about the said ‘exact’ 
value, no matter what the original data distribution was like (e.g. it could be uniform or 
exponential or anything provided that the expected value and the variance exist). 

 

FIGURE 2. Normal distribution is a well studied distribution. If we have a reason to believe (e.g. our 
belief is based on the central limit theorem) that a distribution is normal (or Gaussian as often called) 

we can foretell that ~68% of the data is supposed to be within  ± σ, where the mean  is estimated by 
Eq. (29) and the standard deviation σ by Eq. (32), for instance. We can also see that ~95.5% of the data 

should be within  ± 2σ, and less than 0.3% is expected to be outside the  ± 3σ limit. 



Sándor Nagy: Stochastics and Nuclear Measurements ln e

 

14  

The central limit theorem makes normal distribution one of the most important continuous 
distributions. Also, the fact that we know a lot about normal distribution makes the central 
limit theorem a very practical thing, namely, whenever it is in action, it is easy to judge how 
large deviations are to be expected from a given mean and how often a given deviation is 
likely to occur (see FIGURE 2). 

Note that the central limit theorem can be phrased not only for averages but also for sums 
(see FIGURE 3) and, moreover, with much weaker conditions than specified above. 

For n-sums, e.g., the central limit theorem can be phrased like this: Under the conditions 
specified above, the sum n  (X1+X2+…+Xn) is asymptotically N(n,n 2) normal. 

 

FIGURE 3. The above sequence of figures shows the distributions of the possible outcomes of four 
series of coin tossing—four series of Bernoulli trials—each representing one particular B(n, p) 

binomial distribution (see later on). The probability of heads/tails has been fixed to q = p = 0.5, and the 
number of tosses (n = 1, 4, 16, 64) has been increased by a factor of 4 in the subsequent Bernoulli 

series. The figures demonstrate several things at the same time. (1) Central limit theorem: The sum of 
a large enough number of independent random variables having a common distribution (such as the 

total number of tails obtained in a long series of single tosses) is normally distributed. (2) The binomial 
distribution can be approximated by normal distribution if n is large enough. (3) According to the 
upper left figure, if the number of data is quadrupled, then the accuracy of the average will 

double. (Note that the 2σn arrows copied from the rest of the graphs halve as n gets 4 times larger.) 
The average comes into the picture because the ratio x/n (lying between 0 and 1) can also be 

interpreted as the average of n Bernoulli random variables that can only assume the values 0 and 1 (see 
later on). (4) Law of large numbers: As n increases, the relative width of the binomial distribution 

gradually diminishes, which guarantees that the relative frequency x/n observed will eventually match 
the probability p = 0.5 as n  . (Note that the ratio x/n represents not only the average value of the 

Bernoulli variable, but also the relative frequency of tails in a concrete Bernoulli series.) 
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2.3. Convolution and deconvolution 

The convolution and the sum of independent random variables. If X and Y are 
independent (continuous) random variables with density functions fX and fY, as well as 
distribution functions FX and FY, respectively, then the density function fX+Y and the 
distribution function FX+Y of the random variable Z = X+Y are given by the following 
convolutions: 

 uufuzfzffzf YXYXYX d)()()()( 



  , (49) 

 uufuzFuFuzFzFFzF YXYXYXYX d)()()(d)()()( 







  . (50) 

The integral determining fX+Y is called the convolution of density functions, that 
determining FX+Y is referred to shortly as the convolution of the distributions. (The latter can 
also be calculated when X is discrete with a finite number of spectrum points. Then, in the 
case of continuous distributions, the density function fX+Y can be obtained by differentiation if 
necessary.) The convolution as an operation is commutative, just like the addition. If the 
distributions are such that fi(u) = 0, for u  ai, then: 

 uufuzfzff
az

a

d)()()(
1

2

2121 


 . (51) 

If therefore a1 = a2 = 0, then the integration proceeds between 0 and z. 
(#8) Uniform distribution: U(a, b). In the following discussion we will sometimes refer to 

the (continuous version of the) uniform distribution that is characterized by a rectangular 
density function between the limits a and b. More precisely, the density function of the 
U(a, b) uniform distribution is f (x) = 1/(b−a) in the interval (a, b) and f (x) = 0 elsewhere. Its 
expected value is  = (a+b)/2 and its variance is  2 = (b−a)2/12. The density function of the 
uniform distribution U(0, 1) is shown in FIGURE 4. 

Deconvolution. Making use of the property of the characteristic function (Fourier 
transform) expressed by Eq. (24), we can find a simple solution for expressing one of the 
components from a (density) function having the form of a convolution. We can write: 

 )()()()( YXYXYX fffff   . (52) 

Therefore the density function of X, e.g., can be expressed by the inverse Fourier 
transform: 

 






 
 

)(

)(1

Y

YX
X f

ff
f


 . (53) 

(#9) The significance of convolution/deconvolution exceeds the boundaries of probability 
theory. Some nuclear spectra can also be described by a convolution-type integral. For 
instance, a transmission Mössbauer spectrum is the convolution of two functions one of which 
is characteristic of the source of radiation while the other of the absorber (sample). The latter 
function contains all the parameters that the spectroscopist can be interested in, which explains 
why some methods of spectrum evaluation include the calculation of deconvolution as well. 
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FIGURE 4. This figure shows the rectangular density function of the uniform distribution U(0, 1) 
together with its convolutions. Generating U(0, 1) (pseudo) random numbers is a standard feature of 

many ‘scientific’ calculators. The convolution power U*U represents the distribution of the sum of two 
such numbers. Similarly, if three such numbers are added, the distribution of the sum will be U*U*U. 
The example demonstrates how soon central limit theorem can be caught in the act even in the case of 

a distribution far from being bell shaped. Note that the density function of U*U*U is composed of 
parabolic fragments but still it is rather close in shape to that of a normal distribution of the same mean 

and variance. 

2.4. Random sums 

Sums of a random number of random variables—in short: random sums—are often 
encountered at several stages of radiation detection. The problem usually presents itself 
disguised as a product: 

Consider about N items, each consisting of about X parts (or, alternatively, each 
weighing/measuring/worth etc. about X kg/m/dollars etc.). Obviously the whole lot of parts 
(mass/length/value etc.) adds up to about NX (kg/m/dollars etc.). The question to be 
answered is the following. What is the error of this ‘product’? 

The answer is given by the following theorem (Feller 1968, Korn and Korn 1968). This 
theorem gives the solution for the recurring problem of Bernoulli sampling that will be 
discussed later on. 

Let X1, X2, … XN be a sequence of mutually independent (integral valued) random variables 
with a common distribution. Let N be itself an integral valued variable, being independent of 
the others. Let N = X1+X2+…+XN. Let GX (s) denote the (common) generating function of the 
variables X1, X2, … XN. Let GN (s) be the generating function of N, and G (s) that of the 
random sum N. Then we have: 

 ))(()( sGGsG XNΣ  . (54) 

Applying the chain rule of differentiation to Eq. (54), we can calculate the expected value 
and the variance of the random sum from Eqs. (21): 

 XNΣ    2222
XNNXΣ    (55) 

Thus the square of the relative deviation of the random sum is: 
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This asymmetrical result implies that if the (expected) number of terms is large enough, 
then the variance of the random sum is principally determined by the variance of the number 
of these terms (i.e. the variance of the individual terms is of relatively less importance). It is 
worthwhile to compare this result with Eq. (61), showing the formula of error propagation for 
‘real’ products. 

 

2.5. General approximation of error propagation 

For any sequence of random variables, the following approximation holds for the error of 
the formula f (X1, X2,…Xn) calculated from these variables: 
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If the variables are mutually independent, then the second sum containing the covariances 
becomes zero and therefore we have: 
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The subscript μx   is to indicate that the derivatives must be calculated at the expected 
values of the variables. (In practical terms, the expected value is the ‘exact’ value around 
which the ‘measured’ value of the variable fluctuates.) 

Equations (57)-(58) have been obtained from the (first-order) differential—i.e. from a 
linear approximation—of the function f (X1, X2,…Xn). Therefore the related formulae are quite 
general in the sense that f can be any type of differentiable function, however the 
approximation can only be used for continuous variables and for relatively small errors. On 
the other hand, Eqs. (46)-(47) obtained for linear expressions—actually the special cases of 
Eqs. (57)-(58)—are exact. 

 

2.6. Formulae for products/ratios of independent random variables 

For the expected value of products/ratios we have the following exact formula: 
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If D2(Z)/E3(Z) is small enough, then we get the following approximation by expanding the 
expression 1/Z into Taylor series about E(Z): 
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 . (60) 

The approximation of standard deviation of products/ratios can be obtained from the 
appropriate form of Eq. (58): 
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We can see that, in the case of multiplication and division, it is the squares of the relative 
deviations that add up, rather than the variances. Note that the last term representing division 
is also added rather than subtracted in the above formula. 

We have seen earlier that Eq. (56) gives a different error formula for a different type of 
‘product’. In the case of products therefore it is worthwhile to think it over whether or not a 
random sum is hiding behind the problem. This can only happen, of course, when one of the 
variables is an integer having no dimension. 
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3. Special Distributions 
On the next few pages we will go through the distributions playing a role in nuclear 

measurements as well as in the evaluation of nuclear spectra.  
 

3.1. Bernoulli distribution: B(1, p) 

Mass function: ...........








0if

1if
);(

xq

xp
pxXP where: pq 1  

Generating function: psqsG )(  

Expected value: p .........................Mode: 







qp

qp

if0

if1
 

Variance: ........pq Relative deviation: 
p

q
 

Some authors consider the terms Bernoulli distribution and binomial distribution 
synonyms. We will reserve the former for the simplest variant of binomial distribution. 

Interpretation. Consider a dichotomous experiment that has only two possible outcomes 
(alternative events) like a ‘coin toss’. One of the alternative outcomes (e.g. ‘heads’) is 
generally called ‘success’ while the other (e.g. ‘tails’) ‘failure’. The probability of ‘success’ is 
denoted by p, that of ‘failure’ by q = 1 − p. Now, the Bernoulli variable X is defined as 
follows: 

 X(‘success’)  1   X(‘failure’)  0 . (62) 

 

FIGURE 5. Three basic types of Bernoulli distribution classified according to the ratio of 
p (‘success’  1) to q (‘failure’  0). Any series of Bernoulli trials results in binomial distribution 
(see FIGURE 3), however only the third type, characterized by a low probability of success, leads to 

Poisson distribution. Radioactive decay usually belongs to the latter category. 
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 (#10) The repeated independent trials associated with such a dichotomous ‘game’ are 
called Bernoulli trials. 

(#11) As regards nuclear methods, another dichotomous game comes to mind: the fate of a 
radioactive nucleus in a period of time. The alternative outcomes are: ‘decay’ (characterized 
by probability p) and ‘survival’ (characterized by probability q). 

(#12) B(1, p) Bernoulli random numbers can be easily obtained from U(0, 1) random 
numbers uniformly distributed in the interval (0, 1). (As mentioned before, such random 
numbers are readily available using ‘scientific’ calculators.) The algorithm is straightforward: 
we choose X = 1, whenever the U(0, 1) uniform random number happens to be less than p, and 
we choose X = 0 otherwise. 
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3.2. Binomial distribution: B(n, p) 

Mass function: ....... ),1,0(),;( nxqp
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Interpretation. Consider a dichotomous ‘game’. Let p denote the probability of ‘success’ 
in a single trial. Let us perform a series of n Bernoulli trials. Let X1, X2, … Xn denote the 
independent Bernoulli variables belonging to the respective trials. Then the random variable 
X  X1 +…+ Xn has a B(n, p) binomial distribution. 

(#13) Note that X means the number of successful outcomes in the series of n Bernoulli 
trials. Note also that the above interpretation justifies the use of the symbol B(1, p) for the 
Bernoulli distribution. 

(#14) The above remark provides a straightforward recipe for the simulation of B(N, p) 
random numbers if we have a U(0, 1) random number generator. All we need to do is generate 
N random numbers of B(1, p) Bernoulli distribution according to remark (#12). The sum of the 
N Bernoulli numbers will then result in a B(N, p) random number. 

(#15) The coin-toss game can be performed either by tossing one single coin n times, or by 
tossing n coins simultaneously. If the only question is the probability of tossing exactly x 
‘heads’ out of n tosses, then the two games are essentially identical, and the answer is 
provided by the mass function of the B(n, p) binomial distribution. (It follows from symmetry 
that by swapping the roles we get a similar formula for the number of ‘tails’, too.) 

(#16) Referring to remark (#11), the simultaneous ‘coin-toss game’ can be paraphrased like 
this: Let us consider n identical radioactive nuclei, any of which decays with the same 
probability p during a certain period of observation. What is the probability that exactly x 
nuclei will decay? The answer is given by the mass function of the B(n, p) distribution. In 
other words, the fluctuation of the number of nuclei that actually decay over a given period of 
time can be described by the binomial distribution. (It follows from symmetry that by 
swapping roles—let p denote the probability of ‘survival’, and x the number of nuclei 
escaping decay over the same period—we get the same distribution for the number of 
‘survivors’.) 

(#17) Let n denote the number of radionuclei like before. Let p represent the probability 
that a selected nucleus will decay within a given period of time, and  the probability that the 
decay of a nucleus will be actually observed with the given detector system. Then p 
obviously measures the probability that a given nucleus decays over the period of time and 
this decay will be actually observed. What is the probability that we will observe the decay of 
exactly x nuclei? The answer is given by the mass function of the B(n, p) distribution. In 
other words, the fluctuation of the number of counts measured (without background) over a 
given period of time can be described by the binomial distribution. 

We will refer to this result as the Bernoulli sampling of binomial distribution, because 
the problem can also be presented in the following way: The number of decayed nuclei have a 
B(n, p) distribution. Let X denote the actual number of nuclei that have decayed over the given 
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period of time. Let us perform a B(1,) sampling on the decayed nuclei, i.e. we go over them 
one after the other and either accept them with probability  (meaning that the decay of the 
nucleus has been detected) or discard them with probability 1− (the decay of the nucleus has 
escaped detection). The question is how many decay events have been detected altogether and 
how these detected numbers are distributed in a whole series of like experiments. Thinking it 
over, we have a series of Bernoulli trials here, the length of which (X) itself is a random 
variable with a B(n, p) distribution. Therefore what we should do is add up X random variables 
having B(1,) Bernoulli distribution. Using Eq. (54) obtained for random sums we find that 
this sum—i.e. the number of decay events actually observed or, which is the same, the number 
of counts—has B(n, p) distribution, where p is the probability of decay and  < 1 is the 
probability/efficiency of detection. 

(#18) We can check for ourselves that for large values of n, i.e. for large , the mode(s) of 
binomial distribution is (are) practically equal to the expected value, which means that the 
expected value doubles as the most probable value. On the other hand, the relative deviation 
rapidly decreases with increasing n or . This means that the distribution—obeying the law of 
large numbers—is gradually ‘shrinking’ on the expected value (see FIGURE 3). 

Owing to this, if we have measured a large enough number of counts, that single number 
can be considered as a fairly good estimate of the expected value. (This statement is not at all 
true for any distribution.) Of course, in the case of such a one-point estimate it is impossible to 
find out whether or not the measured data point squares with the assumption that the 
equipment has been faultless. 

 

3.2.1. Properties 

Addition theorem. If X1 and X2 are independent random variables with B(n1, p) and 
B(n2, p) distribution, respectively, then the random variable X = X1+X2 has B(n1+n2, p) 
distribution. 

(#19) As regards the example mentioned in remark (#16), the above property means that if 
we have two ‘heaps’ of identical radionuclei, then not only the separate counts have binomial 
distribution (with expected values n1p and n2p as well as variances n1pq and n2pq, 
respectively), but the total number of counts as well [with expected value (n1+n2)p and 
variance (n1+n2)pq]. Choosing one second as the time of observation, the addition theorem 
expresses the additive property of activity. 

Normal approximation (DeMoivre-Laplace limit theorem). It follows from the 
interpretation as well as from the central limit theorem that for large enough values of npq 
(npq  6 suffices already) the binomial distribution can be approximated by a normal 
distribution with expected value  = np and variance  2 = npq (see FIGURE 3 and FIGURE 6): 

 ),(),( npqnpNpnB  . (63) 

Poisson approximation. For small enough values of p and large enough values of n 
(p  0.1 and n  20 will do) the binomial distribution can be approximated by a Poisson 
distribution with parameter (expected value)  = np (see FIGURE 5 and FIGURE 7): 

 )(),( npΠpnB  . (64) 

(#20) Let us return to the example in remarks (#16)-(#17). If the observation period is very 
short compared to the half-life of the radionuclide in question (i.e. p  1) and if the total 
number of nuclei observed is large enough, then the number of decay events/counts has a 
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Poisson distribution. This serves with a simple ‘recipe’ for the estimation of the standard 
deviation: 

 Xs   . (65) 

 

FIGURE 6. The N(np, npq) normal distribution provides a rather good approximation for the 
B(n, p) binomial distribution irrespective of the value of p provided that npq  6. In the 

example shown n is merely 59, and npq is only 10, however the ‘fit’ is quite good already. 

 

FIGURE 7. The B(n, p) binomial distribution can be approximated with the  (np) Poisson distribution 
even for small values of  = np provided that the probability of success in a single trial is small 
(p  0.1). We can see that the ‘fit’ is reasonably good at p = 0.1, although the value of  is only 

np = 10. For p = 0.01, on the other hand, the ‘fit’ looks almost perfect (see FIGURE 5). 

(#21) Continuing the previous remark: If the number n of the radionuclei is large enough, 
which is usually the case, then the number of decay events/counts is normally distributed. 
Therefore the expected fluctuation of counts, e.g., can be judged by the ‘rules’ of normal 
distribution (see Table 3). For instance, the counts Xi collected over the same length of time 
are supposed to lie in the error intervals ‘  1 ’, ‘  2 ’, and ‘  3 ’ with the following 
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frequencies (provided that the total time needed for the series of measurements is short enough 
compared to the half-life of the radionuclide): 

 %68:XX  ;  %4.95:2 XX  ;  %7.99:3 XX  . (66) 
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3.3. Poisson distribution:  () 

Mass function: ................ ),2,1,0(e
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Variance: ........   Relative deviation: .......

1

 

Interpretation. Consider a recurring instantaneous rare event (like the arrival of a 
background pulse) which repeats itself at random over time. We wish to count such events 
over a certain observation period T. We will assume that the following general conditions are 
satisfied: 

1, The outcome of the observation does not depend on the location of T along the time 
axis. 

2, The occurrences of the event in separated time intervals are stochastically independent. 
We will also assume that the following ‘rarity’ and ‘time-proportionality’ conditions are 

fulfilled in the case of very short periods of time t << T: 
3, If the observation period T is divided to n equal intervals—’time cells’—of length 

t = T/n, then the majority of such intervals would not contain any event at all, while the rest 
contain exactly one event each, provided that n is large enough (n  ). That is, the 
possibility of events appearing in doublets etc. is excluded if the ‘time cells’ considered are 
small enough. 

4, At the above fine time-scale the (single) occurrence of the event within a ‘time cell’ is 
proportional to the length t of the interval: 

 
n

t
T

Pp


 Δ
Δ

)1( . (67) 

If the above assumptions are satisfied, then the total number of events observed (i.e. the 
number of counts X) has a  () Poisson distribution. 

(#22) Condition 4 can be better understood, if  is regarded as the expected number of 
events occurring over the observation period T. (According to the data in the box of 
characteristic parameters, this interpretation is justified, because E(X) =  for the Poisson 
distribution.) Thus the ratio  /n equals the average number of events occurring in a single 
‘time cell’. Note that as n approaches infinity, this average sooner or later drops below 1, 
however large the value of  is (e.g.,  /n  k/m, where k < m). Owing to condition 3 this 
means that—asymptotically—on an average k cells out of m contain exactly one event each, 
while the rest are empty. In other words, the probability that a cell is ‘filled’ with an event is 
k /m (  /n), i.e. condition 4 is satisfied. 

(#23) The above conditions are fulfilled, e.g., in the case of the background caused by 
cosmic radiation etc. Therefore background counts observed over a given period of time 
have Poisson distribution. 

(#24) We can see that, for large values of , the mode(s) is(are) practically equal to the 
expected value, i.e. the expected value doubles as the most probable value in the case of the 
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Poisson distribution. On the other hand, the relative deviation rapidly decreases as  increases. 
Thus the distribution is gradually ‘shrinking’ on the expected value. 

Consequently, if we measure a large enough background, then this single measurement can 
provide a fair estimate for the expected value, the square root of which can be used for the 
estimation of the standard deviation. (See also remark (#18) on the unreliability of such one-
point estimates.) 

3.3.1. Properties 

Bernoulli sampling. Consider a random variable with a  () Poisson distribution, which 
counts the occurrences of certain types of events (e.g. events of radioactive decay). Let us 
perform a B(1,) Bernoulli sampling on the counted events, meaning that we either accept 
them with probability , or discard them with probability (1−). For instance,  can indicate 
the efficiency of detection, in which case ‘acceptance’ means that the decay event in question 
has been actually detected. It follows from Eq. (54) that the number of events passing such a 
sampling (e.g. the number of detector pulses caused by the radiation of decaying nuclei) has a 
 () Poisson distribution. (See also remark (#17).) 

Addition theorem. If X1 and X2 are independent random variables with Poisson 
distributions  (1) and  (2), respectively, then the random variable X = X1+X2 has a 
 (1+2) Poisson distribution. 

(#25) As a consequence of remark (#20) as well as due to the addition theorem the 
following conclusion can be drawn: Suppose that we observe the decay events in a specimen 
containing a mixture of two (or more) radionuclides. If the observation period is short enough 
in comparison with any of the half-lives (i.e. any single nucleus will survive the period with a 
high probability), then the total number of decay events has a Poisson distribution. It follows 
from the property of Bernoulli sampling that the same applies to the total number of counts. 

(#26) Continuing the previous remark as well as remark (#23): The number of counts 
measured with background also has a Poisson distribution. 

Normal approximation. It follows from the addition theorem and from the central limit 
theorem that for large enough  the Poisson distribution can be approximated by a normal 
distribution (see FIGURE 8): 

 ),()(  NΠ  . (68) 

 

FIGURE 8. The N(, ) normal distribution provides an almost perfect fit for the  () Poisson 
distribution at as low a parameter value as  = 100. 
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(#27) Continuing the previous remarks: If the counts measured together with background 
are large enough, then their fluctuation can be judged by the ‘rules’ of the normal distribution 
in the same way as suggested in remark (#21). See Eq. (66)  and Table 3. 
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3.4. Exponential distribution: (1, ) 

Density function: .................
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Interpretation. Consider an ‘ageless’ but ‘mortal’ entity the lifetime of which is 
characterized by the random variable T(0,). Agelessness means that—at any moment of its 
life—the life expectancy of such an entity is independent of its age, i.e. of the time it has 
already lived up to that point. Therefore if we find it alive at the moment t > 0 (i.e. if T > t), 
then the (conditional) probability of still finding it alive at a later moment t+s only depends on 
the time elapsed since the moment t (i.e. it only depends on s): 

 )()( sTPtTstTP  . (69) 

Let us further assume that the probability that the entity’s ‘death’ (or ‘decay’ as is usually 
called) occurs within a given time interval is proportional to the length t of that interval, 
provided that t is small enough. In other words, Pdecay = 1 − P(T > t) =  t, where  is the 
decay constant. 

If the above conditions are satisfied, then the lifetime T is a random variable with  (1, ) 
exponential distribution. 

(#28) It is obvious that the above conditions have been ‘tailored’ to fit the disintegration of 
radioactive nuclei. Therefore we can declare that the lifetime distribution of radionuclei is 
exponential. The same is true for the excited states of nuclei as well as atoms. 

There are cases when the exponential distribution is related to waiting times between 
random events rather than to lifetimes. In such cases the adjective ‘ageless’ is swapped for 
‘memoryless’ (Goodman 1988). Anyway, both metaphors are verbal expressions for the same 
mathematical condition and as such they determine the same (exponential) distribution. 

Another phenomenon related to exponential distribution is the absorption (attenuation) of 
gamma photons in a homogeneous absorber. The correspondence between the roles is as 
follows: t  d (depth of penetration),    l (linear attenuation coefficient), T1/2  D1/2 
(halving thickness),    (mean free path). Agelessness is translated now to indefatigability 
meaning that the photons—in contrast to ionizing particles—are not losing energy in a 
continuous way as they proceed in the absorber. However, being mortal, they may ‘drop dead’ 
suddenly via photoelectric effect, for instance. 

(#29) The distribution function (see the red curve in FIGURE 9) expresses the monotonically 
increasing probability that the nucleus will decay sometime over the period (0, t). The 
‘mortality’ of the atom is expressed by the normalization condition F() = 1 (which is 
fulfilled). The fact, on the other hand, that the atom was actually found ‘living’ at the moment 
0 corresponds to the condition F(0) = 0 (also fulfilled). Thus the probability that the atom will 
survive t is: 
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 tetF  )(1 . (70) 

 

FIGURE 9. The exponential distribution function F(t) (red curve) expresses the probability that the 
‘entity’—looking at it from the present moment 0—will be ‘dead’ by the moment t (i.e. that it will 

decay somewhere between 0 and t). The dotted curve, on the other hand, shows the probability of the 
complementary event, i.e., that the same ‘entity’ will survive the period (0,t). For t > 0 the curve of the 

exponential density function is obtained from the blue curve by multiplying the latter with . 
(However, for t  0, the density function is zero, not 1, as we can see in FIGURE 1.) 

(#30) Using the above equation, one can get exponentially distributed random numbers 
from uniformly distributed ones having U(0, 1) distribution. If, namely, the random 
number/variable X is uniformly distributed in the interval (0, 1), then the random 
number/variable T calculated from the formula 

 

X

T
ln

  (71) 

will have a  (1,) exponential distribution (Goodman 1988, Lux and Koblinger 1991). 
(#31) In the case of the lifetime distribution of radionuclides, excited states etc., the 

expected value  is called the mean life7, while the median T1/2 is referred to as the half-life. 
The explanation for the name ‘half-life’ is given in the next section on the exponential law of 
radioactive decay. We will see that the half-life is independent of the time elapsed, which is an 
obvious proof of the agelessness of radionuclides. 

(#32) Looking at the location parameters of exponential distribution, we can see that the 
rule of thumb expressed by Eq. (13) works fairly well for the mode (0), median (T1/2) and 
mean ( ), the ratio of their respective distances being 0.7:0.3 ( = 2.1:0.9). This ratio is almost 
equal to the predicted ratio 2:1 (see also the upper right diagram in FIGURE 1). 

                                                           
7 Note that physicists often use the term lifetime not only in the sense we do here, but also in the sense mean life. 
Fortunately, in the really important cases, i.e., when quantitative statements are made (e.g., ‘the lifetime of the 
radionuclide is 10 s’), the ambiguity is removed and the reader can be sure that such a statement actually refers to 
the mean life. 
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(#33) The relative-deviation formula (rel = 1) explains why it is practically hopeless to 
give a usable mean-life estimate from the observation of the decay of a single atom. 
(Remember, however, that in the case of the Poisson distribution a large enough observed 
value could be considered as a fairly good estimate of the expected value.) On the other hand, 
if we change the time-scale to logarithmic, e.g., by one of the following transformations:  

 tw ln     or    

t

u ln  (72) 

(but decimal logarithm will also do), then the density function of the new variable (readily 
obtained from the exponential distribution function by differentiation using the chain rule): 

 
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)(     or    )eexp()( uuuf   (73) 

reaches its maximum at the value corresponding to the condition t =   (Schmidt et al. 1984). 
The halfwidth of the asymmetric bell-shaped curve in FIGURE 10 is rather large 

(FWHM  2.5 representing about a decimal order of magnitude in uncertainty), however, it 
can serve as a basis for estimating the mean life  from the mode of a histogram that has been 
drawn using the logarithm of a few dozens of lifetime data. This method is used for the 
identification of super-heavy elements (SHEs) when only the decay of a couple of man-
produced transactinide atoms can be observed at a time. 

 

FIGURE 10. The density function of the logarithm of exponentially distributed lifetimes. Using this 
trick, the estimation of the mean life can be reduced to the determination of the mode (i.e. the most 
frequent value) of a logarithmized lifetime histogram related to the above distribution. This method 

can be used whenever the number of lifetimes that can be measured is so small that the standard 
method of mean life determination ( = 1/) based on the exponential fit of lifetime data fails. See also 

remark (#35). 
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3.4.1. Connection with the exponential law of radioactive decay 

Suppose that at moment zero we have N0 atoms. The question is how many atoms will live 
at moment t. Let N(t) denote this number. Now if we repeated the experiment several times 
starting with the same number of atoms (N0), then the number of the survivors would vary 
showing that N(t) is a random variable. In other words, the N(t) values would fluctuate about 
their time-dependent mean )(tN . For any fixed value of t, N(t) has a BN0, p(t) binomial 

distribution for which the value of p(t)—i.e. the probability that a given atom is still intact at 
moment t—is calculated from Eq. (70) as explained in remark (#29) and FIGURE 9: 

        0
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  . (74) 

Now if the question is put this way: How many atoms are expected to live at moment t ?, 
then the answer is provided by the expected value of the binomial distribution: 

   t
B NtNEtN  e)()( 0 . (75) 

We can easily recognize the exponential law of radioactive decay in the above formula. 
The correspondence )(tN  N reminds us that the exponential law applies to the expected 

number of atoms rather than to the concrete numbers that we measure. The latter show a 
fluctuation about those expectations according to the standard deviation of the binomial 
distribution: 

   )e1()()e1(e)()( 0
ttt

BN tNNtNDt    . (76) 

Note that the above formula gives  = 0 both for t = 0 and for t = . This is due to the 
following certainties: (1) all of the N0 atoms were intact at time 0 (2) all of them will decay 
sooner or later. 

As for medium lengths of time (i.e. for periods that are commensurable with the mean life 
of the atoms), the acceptability of the approximation )(tN  N can be judged by the relative 

deviation formula: 
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The above result conveys a reassuring message, namely, if the number of intact atoms is 
still large enough, then the uncertainty of their number (as expressed by the relative deviation) 
is negligible. That means that the deterministic expression 

 2/1/
0

/
00 2ee Tttt NNNN     (78) 

usually referred to as the exponential law of radioactive decay stands the test of statistics as 
well. 

(#34) The reason for calling the median ‘half-life’ can be best understood from that variant 
of the exponential law in which the usual base e is changed to 2. The last expression in 
Eq. (78) shows that N0—representing the number of atoms present at time t = 0—will drop to 
N0/2 by the time t = T1/2. Then, after another half-life, the number of survivors will be halved 
again, and so on. Experience shows that the half-life of radionuclei is independent of both the 
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choice of the origin and the number of halving cycles that have already elapsed. This can be 
regarded as a proof for the agelessness of radionuclei. (If they were subject to aging, then the 
half-life should gradually decrease—an indication that the rest of the population is getting 
closer to the end of their lives.) 

(#35) The exponential law can be written formally as: 

 tbbbbttt 2e),;();()( 121
  b . (79) 

The above expression is an example of a model function, which fits the nuclear spectrum 
consisting of the spectrum points8 

 kitNt ii ,2,1))(,(   (80) 

at an appropriately chosen value (a) of the parameter vector b: 

 ab  ),(),( 021 Nbb  (81) 

By fitting we mean that Eq. (79) will produce the expected value of N(ti) for any value of 
the independent variable ti. (See Chapter 5 on fitting nuclear spectra.) 

 

3.4.2. Exponential law in a binomial way 

FIGURE 11 and FIGURE 12 help to understand the connection between exponential law on 
the one part as well as binomial distribution and exponential distribution on the other. 

FIGURE 11 shows the possible ‘fate’ of 1000 atoms through 28 subsequent periods of 
time—time units—by taking a census of the population at the end of each period. 
The population numbers N(t) have been simulated by a sequence of random numbers with 
B(Nt, p) distributions9. (The value of the parameter p—representing the probability that a 
single atom will survive the next period—has been fixed to p = 0.9.) Thus the starting value of 
N(t)  Nt has been N0 = 1000, then the number of survivors has been decreased stepwise by 
using the recursion algorithm B(Nt −1, p)  Nt. 

The time-dependence of the expected number of survivors is expressed by the 
monotonically decreasing sequence of the binomial expected values 
N0p, (N0p)p, [(N0p)p]p, … N0p

{t}. Note that this sequence consists of the substitution values of 
a decreasing exponential function taken at the end of each period. The explanation for this is 
as follows. Since no atoms are born in any of the periods, each ‘census’ simplifies to a 
survival test. The mathematical equivalent of this is the B(1, p) Bernoulli sampling of the 
B(Nt−1, p) distribution of the previous population. Note that the exponential character of the 
expected value as a function of time is explained by the fact that the Bernoulli sampling has 
been performed with the assumption that the probability of survival is the same for each 
period (p  0.9). This assumption, on the other hand, is equivalent to the assumption of 
agelessness, which, in turn, implies the exponential character of the lifetime distribution. 

                                                           
8 Note that the expression ‘spectrum point’ is used here in the same sense as in Chapter 5. See in contrast 
footnote 1 after Eq. (1). 
9 See remark (#14) for the recipe. 
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FIGURE 11. The possible fate of 1000 atoms followed by simulation. The probability that a given atom 
will survive a single time unit has been fixed at p = 0.9. The number of survivors decreases 

monotonically according to a step function that follows the curve of an exponential function. On the 
abscissa we use the standard notation recommended by IUPAP to express the physical quantity t as a 

product of a numerical value {t} and a unit [t]. (See the text for more detail.) 

The exponential function obtained for the expected value can be rewritten in e-based form 
as well with the notation {λ} = ln (1/p), and if we attribute the unit [λ] = [t]-1 to the ‘new’ 
physical quantity λ (which we may call the ‘decay constant’) we can write: 

 tttpt NNNpNtN    eee)( 0
}}{{

0
}){/1ln(

0
}{

0 , (82) 

which can be considered as the stochastic reinterpretation of the decay law. 
If the probability of decay (q = 1−p) is small (e.g. in the given case it is only 0.1), then the 

factor ln(1/p) can be expanded into a Taylor series, yielding a probabilistic interpretation for 
the decay constant : 

 qq
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 . (83) 

Thus  measures the probability that a selected atom will decay during the time unit, 
provided that this probability (and, consequently, ) is small enough (q << 1), which, in turn, 
depends on how long a time unit has been selected. In other words, the numerical value of the 
decay constant must be sufficiently small ( 1) at the given choice of time unit, in order that 
the probabilistic interpretation can work. (Note that this interpretation corresponds to the 
second condition fixed at the interpretation of the exponential distribution.) 

FIGURE 12 shows the change of the simulated N(t) values, i.e. the simulated numbers of 
decay events occurring in the time unit. The corresponding expected value is: 
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FIGURE 12. The numbers of decay events pictured have been obtained by forming the difference of the 
subsequent step-heights of the simulated step function in FIGURE 11. Note that the ‘observed’ numbers 

of decay events are not at all monotonically decreasing in time. However, fluctuating up and down, 
they follow the same exponential curve as the numbers of atoms themselves. 

Comparing Eqs. (82) and (84) as well as FIGURE 11 and FIGURE 12 we can see that the time 
dependence of the number of decay events follows the same exponential rule as that of the 
number of intact atoms themselves. 

 

3.4.3. The Poisson connection 

If the parameter  of the Poisson distribution means the expected number of pulses arriving 
over a certain time interval t, then the equation: 

 t   (85) 

will define the mean frequency of such pulses. 
The probability that in the period t we count exactly x pulses arriving at a mean frequency  

can be calculated from the mass function of the  ( t ) Poisson distribution: 
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Hence the probability that no pulse is counted in the observation period t is: 

 ttXP   e),;0( . (87) 

Note that Eq. (87) also expresses the probability that the waiting time T (i.e. the time 
elapsed between subsequent pulses)—a continuous random variable—will be greater than t: 

 ttTP  e)( . (88) 
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Thus the distribution function of the waiting time T is identical with that of the  (1,  ) 
exponential distribution: 

 ttTPtTPtF  e1)(1)()( . (89) 

(#36) This statement can be reversed, i.e. if the waiting time between pulses has a  (1, ) 
distribution, then the number X(t) of the pulses counted over the period t is a random variable 
with a  ( t ) Poisson distribution. Since the time is an explicit parameter here, we are dealing 
with a process. Accordingly, the ‘function’ X(t) is referred to as Poisson process in the theory 
of stochastic processes. 

(#37) Continuing remark (#26): Consider a radioactive specimen. If the detector pulses 
(including the background) arrive at a mean frequency , then the counts registered over the 
counting period t have a  ( t ) Poisson distribution, and the waiting times between pulses 
have a  (1,  ) exponential distribution. 

(#38) Continuing the previous remark: If the background can be neglected, then the mean 
frequency  equals the source strength or observed activity. Thus it is the observed activity 
rather than the decay constant which directly appears in the exponential density function of the 
waiting times (see FIGURE 13). The value of the decay constant comes into the picture only 
indirectly through the expression: 

 N   (90) 

where  is the efficiency of the detecting system for the radiation produced by the decay and 
N is the number of radionuclei that are still intact. 

(#39) The Poisson process can be used for the estimation of the count rate of chance 
coincidences. Let 1 and 2 denote the mean frequencies of pulses/signals coming from two 
independent detectors (signal channels). The resolving time of the coincidence circuit is , 
and the counting time is t. (A coincidence circuit only sends out an output signal, if—within 
the resolving time —an input signal coming from channel 1 is followed by an input signal 
from channel 2 or vice versa. Since the two types of successful events exclude each other, the 
coincidences estimated separately are to be added up in order to get the total number of 
coincidences over the counting time t.) 

Suppose that an input signal is received from channel 1. The probability that no signal will 
arrive from channel 2 within the resolving time  is exp(−2 ), because the waiting times 
have exponential distribution. (It follows from the memorylessness of the exponential 
distribution that no matter when we start measuring the waiting time, we will get the same 
time distribution. In other words—see FIGURE 13—it does not matter whether we use the 
previous pulse of the very same sequence as a starting signal, or we just start measuring the 
time at random by leaving the business of starting to the pulses of another sequence.) The 
probability of the complementary event (i.e. that a signal will arrive from channel 2 within the 
resolving time  ) is )exp(1 2 . Since the coincidence circuit is used for sorting out 
chance coincidences, we may assume that the exponent is so small that Taylor expansion is 
allowed. Hence the probability in question is 2. This probability can be considered as a type 
of ‘efficiency of detection’ by which the coincidence circuit ‘filters’ (i.e. performs Bernoulli 
sampling on) the signals coming from channel 1. Since the latter have a  (1 t) Poisson 
distribution, the Bernoulli sampling will result in a number of chance coincidences with a 
 (1 t 2 ) distribution. Due to symmetry, we get the same result when channel 2 provides 
the start signal and channel 1 the stop signal. All in all, the total number of chance 
coincidences have a  (21 t 2 ) distribution owing to the addition theorem of the Poisson 
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distribution. Thus the expected number of chance coincidences is about 212 t, from which 
the mean frequency of chance coincidences is as follows: 

 2112 2   . (91) 

 

FIGURE 13. Experimental distribution of the waiting times between the pulses coming from two 
independent radioactive sources containing 22Na. The labels (e.g. strong-strong) refer to the strengths 

(i.e. the observed activities) of the sources which produced the start signal and the stop signal, 
respectively, for the time measurement. We can see that the slope of each curve is determined by the 
mean frequency (strength) of the source producing the stop signals. Note also that the start signals are 
released at random moments and their sequence is completely independent of the sequence of the stop 

signals. This result well demonstrates the memorylessness of exponential distribution. The same 
experiment is usually suggested to produce ‘white’ noise (i.e. random signals that are uniformly 

distributed in time) for the PAS measurements. Our results clearly indicate, however, that the noise 
obtained this way can only be considered ‘white’ in the same way as a finite section of the exponential 

curve can be regarded horizontal. 

 (#40) It is a common mistake with ‘beginners’ that they directly apply the Poisson-type 
error estimation to the count rate  = n/t calculated from the count n registered over a period 

of t in the belief that the ‘error’ of the count rate is  . Dimensional analysis, however, 
reveals that this cannot be the case, because if we choose to ‘measure’  in s−1, then the unit of 
its ‘error’ calculated this way will be s−1/2, which does not make any sense. Actually, the 
‘square-root’ rule applies to ‘unprocessed’ counts only, i.e. to n in the given case. 

Now, the correct error calculation of the count rate  goes like this. Let us use the 
notation recommended by IUPAP for scalar-type physical quantities, i.e., a = {a}[a], where a 
is a physical quantity, {a} is its numerical value and [a] is the unit in which we happen to 
measure a (Cohen and Giacomo 1987). Thus the error of the counts is 

 ttttn {{][{][{  , because [ ] = [t]−1. Since  is obtained from n by 

dividing it by t, the ‘change-of-scale’ rule of standard deviation yields for the error of  
  ]/[{/{][{/{{/ ttttttn   . Note that the error calculation is performed on 
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dimensionless numbers with the time unit fixed for all the quantities involved. So the correct 

data presentation of count rates can be either 1][{/{{ )(  tt  or simply tntn //  . 

Note also that, owing to the erroneous practice mentioned above (which, dimension aside, 

can be rewritten in the form   {{  for better comparison), the standard deviation will be 

either over- or underestimated depending on whether the counting time t is shorter or, 
respectively, longer than the time unit used for the count-rate calculation. In the case of a one-
minute measurement, e.g., if the time unit is the second, then we overestimate the error; if the 
unit is the hour, then we underestimate it; and we only get (numerically) correct result if the 
time unit happens to be the minute. 

(#41) It is a fairly common task in nuclear science to tell whether a hypothetical decay 
would occur. The problematic part is represented by measurements, which have a negative 
outcome, when none of the atoms subjected to surveillance are found to decay during the 
observation period. Then the original question always remains open and new questions arise. 
(1) What would have happened, if the observation period had been longer [in which case 
Eq. (87) would have given more chance for a positive result]? (2) What would have happened, 
if we had subjected more ‘suspicious’ atoms to the surveillance (in which case Eq. (90) would 
have provided larger  value, and therefore Eq. (87), again, would have increased the chances 
of a positive outcome)? 

It is clear that the possibility of decay can never be excluded in cases like that. However, 
we can still specify a finite upper boundary 0, so that the ‘real’ frequency  of the decay is 
lower than this limit with certain probability. Therefore this upper boundary depends on the 
confidence level  set by us (Leo 1987): 

 
t

N
)1(ln

00

 
 . (92) 

For instance, if we want 90% certainty, then we are at the confidence level  = 0.9. 

Eq. (92) can be ‘deduced’ from Eq. (87) using common-sense considerations. Suppose that 
we want to give a guess at the value of . We only know that no signal could be detected over 
a certain observation period t. Then, the best thing we could do is form the weighted ‘average’ 
of all the possible (0    ) values of , using the weights provided by Eq. (87): 
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The advantage of this type of weighting is that it tends to suppress large values of , for 
which negative outcome is not likely to occur. On the other hand, it accentuates small values 
of , which are more compatible with the negative result. 

Note that, according to Eq. (4), the integral on the right-hand side of the above equation has 
the shape of an expected-value formula with the (exponential) density function 

 ttf   e)(   

in which the variable and the parameter have swapped roles with each other. Hence the 
‘probability’ of   0 is: 
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which yields Eq. (92). 

3.5. Gamma distribution:  (r, ) 

The relation of gamma distribution to exponential distribution is similar to that of binomial 
distribution to Bernoulli distribution in so far as the former (i.e., gamma and binomial) is the 
convolution power of the latter (i.e., exponential and Bernoulli, respectively), while the latter 
is a special case of the former. Gamma distribution is also related to the Poisson process (see 
the interpretation given below). However, in the case of the Poisson process we are looking 
for the distribution of X(t), the number of signals that arrive over a fixed period of time t. In 
the case of the gamma distribution, on the other hand, we are interested in the distribution of 
the time T that is needed for a given number of random signals to arrive. 

Density function10: .......................
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Interpretation. Let T1, T2,… Tn. be a sequence of independent random variables with 
 (1,  ) exponential distribution. Then the random variable defined by the sum T = T1 +…+ Tn 
has a gamma distribution of the nth order with parameter . In other words, T has a  (n,  ) 
gamma distribution. 

(#42) Note that, according to this interpretation, the exponential distribution of parameter  
can be rightly considered as a  (1, ) distribution, i.e. it belongs to the family of the gamma 
distributions (see FIGURE 14). Later on we will see that the sum of squares of independent 
random variables with N(0,1) standard normal distribution also has a special type of gamma 
distribution called 2 distribution. 

(#43) For the complete gamma function 

 



0

1 de)Γ( xxr rx  (93) 

we have the following recursion formula: (r + 1) = r (r). 

In particular: π)2/1Γ(  , 1)1Γ(   and ).,2,1()!1()Γ(  nnn  
(#44) We can see that the relative deviation rapidly decreases with the increasing number 

of waiting periods (n = r). This property of the gamma distribution is utilized by the scalers, 
                                                           

10 The order r and the parameter  are positive real numbers, and (r) is the complete gamma function. 
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which only produce an output signal on the arrival of the nth input signal. (In this context n is 
called the scaling factor.) The actual signal frequencies of scalers are, therefore, much more 
uniform (i.e. the signals follow the ‘rhythm’ of the mean frequency much more ‘smoothly’), 
than the original signals themselves (see FIGURE 14). 

 

FIGURE 14. Density functions of gamma distributions of integral order with the parameter value fixed 
at  = 1. The order r = 1 is characterized by the well-known asymmetric density function of the 

exponential distribution. However, as the order increases, the asymmetry decreases, and for as low an 
order as r = 16 we get an acceptable fit with an appropriately chosen normal distribution. The gamma 
distribution is characteristic of the waiting times between scaled events (scaler signals). In that context 

the order r is called the scaling factor, and  is the mean frequency of the original (i.e. unscaled) 
signals. 

 

FIGURE 15. When counting the particles/photons emitted by a radioactive specimen, each decimal digit 
of the counter switches to the next figure after a waiting time determined by a gamma distribution 
the order of which (n), in turn, is determined by the decimal place of the digit. Note that a narrower 
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distribution means a steadier rhythm of switching. For better comparison, the density functions have 
been renormalized so that the geometric area under each curve is the same. 

 (#45) The decimal display of regular counters is in fact a realization of a series of scalers 
with scaling factors n = 100, 101, 102, etc. (see FIGURE 15). Consequently, while the ‘switching 
times’ of the lowest digit (n = 100 = 1) have exponential distribution in accordance with the 
Poisson process, those of the rest are characterized by the density functions of the gamma 
distributions of the order n = 101, 102, etc.: 

 t
n

n n

t
tf  
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 e
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1

. (94) 

Thus the relative deviation of the ‘switching time’ of the third (102) digit is about 10%, and 
that of the fifth (104) digit is only about 1%, which means that the figures at the fifth decimal 
place seem to ‘rotate’ almost steadily. 

 

3.5.1. Properties 

Addition theorem. If X1 and X2 are independent random variables with  (r1,  ), and 
 (r2,  ) gamma distribution, respectively, then the random variable X = X1+X2 has a 
 (r1+r2,  ) gamma distribution. 

Normal approximation. For large enough values of r, the  (r,  ) gamma distribution can 
be approximated by an N(r/,  r/ 2) normal distribution (see the graph in FIGURE 14 to the 
right). (If the order r = n is an integer, then this follows directly from the interpretation and 
from the central limit theorem.) The normal probabilities for deviations from the mean 
(  d) can be found in Table 3. 
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3.6. Normal distribution: N(,  2) 

Density function11: .......
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Expected value, median, mode, center of symmetry:  
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2 Mean abs. deviation:  798.0π/2   

Interquartile range: 1.348 ...................... Point of inflection of f:    
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Interpretation. Let X be any random variable with existing expected value () and 
variance ( 

2). Let Xi denote the random variable representing the outcome of the ith (i = 1, 2, 
… n) independent experiment to observe the value of X. (The random variables Xi are 
obviously independent and have the same distribution as X.) Then the sample 
mean X  ≡ (X1+X2+…+Xn)/n is asymptotically normal with N(,  

2/n) distribution12. 
(#46) The above interpretation is the Lindberg-Lévy version of the central limit theorem. 

We could also have interpreted the [N(np, npq)] normal distribution as the limiting case of the 
B(n, p) binomial distribution (DeMoivre-Laplace theorem), but that is only a special case of 
the general theorem phrased for sums when the limiting distribution in general is N(n, n 

2) 
normal. 

(#47) When the normal distribution is referred to as the limiting case of an integral valued 
(x = 0, 1, 2, …) discrete distribution (e.g. Poisson or binomial distribution), then the 
continuous density function f (x) is actually a substitute for the mass function px. This is so, 
because the latter can be considered as a step function jumping at integral values. Therefore, 
since x = 1, we can write px  f (x)x  f (x) whenever x is an integer. 

 

3.6.1. Properties 

Standardization. Shifting and/or rescaling a normal random variable will result in another 
normally distributed random variable. Therefore, the standardization of the N(,  2) normal 
random variable X will result in an N(0, 1) standard normal random variable Y: 

 




X

Y . (95) 

                                                           
11 f01 and F01 are the N(0, 1) standard normal density function and distribution function, respectively. 
12 In physics and engineering etc. normal distribution is often called Gaussian distribution. However, we will 
only use the expression Gaussian curve meaning an un-normalized normal distribution function as shown in 
FIGURE 18. 
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(#48) The random numbers produced by common calculators usually have a uniform 
distribution between 0 and 1. However, such U(0, 1) random numbers can be easily converted 
to normally distributed random numbers by summing them n at a time [see remark (#46)]. 
Considering large enough values for n, the summation will result in random numbers with an 
N(n/2, n/12) distribution [see remark (#8)]. Thus, for n = 12 we get an N(6, 1) distribution. In 
this case we can convert the result to N(0, 1) standard normal distribution by subtracting 6 
from the sum. 

 

FIGURE 16. Comparison of the error function (erf) with the density function (f01) and the 
distribution function (F01) of the N(0, 1) standard normal distribution. The intervals 0  1, 0  2, 

and 0  3 correspond to the error limits   ,   2, and   3, respectively. The normal 
probabilities for deviations from the mean (  d) can be found in Table 3. 

(#49) The N(0, 1) random numbers simulated according to the above remark can be used, 
e.g., for the simulation of nuclear spectra. Nuclear spectrum points (see in Chapter 5) have 
N(i, i) distribution. If the i values are calculated from the fitting function and Ri is an 

N(0, 1) random number, then the formula iiii RY    defines a random number with 

N(i, i) distribution as required. 
Addition theorem. If X1 and X2 are independent random variables with N(1, 1

2), and 
N(2, 2

2) normal distribution, respectively, then the random variable X  X1+X2 has an 
N(1+2, 1

2+2
2) normal distribution. 

Bernoulli sampling. Suppose that the aim of an experiment is to observe certain objects 
(e.g. all the ‘visible’ photons belonging to a light pulse that was produced as a result of the 
detection of a single radiation particle in the scintillator). Suppose that the number of these 
objects is a random variable with N(,  2) distribution. The objects are taken one by one and 
either ‘accepted’ with probability  or ‘discarded’ with probability 1−. In other words: a 
B(1, ) Bernoulli sampling is applied to them. (Returning to the above example,  can 
represent the probability that a ‘visible’ photon will produce a photoelectron due to its 
interaction with the photocathode of the multiplier.) The question is, how many objects have 
been accepted altogether in the experiment, i.e. how many objects have passed the test of 
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Bernoulli sampling (e.g. how many photoelectrons have formed on the photocathode as a 
result of the detection of a single radiation particle) and how these accepted numbers are 
distributed if a whole series of like experiments is considered. The N(,  2) distribution 
mentioned above is, of course, the integral-valued ‘discrete’ version of normal distribution, for 
which the substitution values f (n) of the density function act as mass function at the integral 
values of the x axis. Therefore the question can be answered by reversing the DeMoivre-
Laplace theorem, i.e., if  >  2 and  >> 1, then there is a B(n, p) binomial distribution which 
provides a fair approximation for the N(,  2) distribution. In the case of the binomial 
distribution, we have seen that the result of Bernoulli sampling is a B(n, p) distribution. Thus 
we only need to find the N(, 

2) distribution that approximates this Bernoulli-sampled 
binomial distribution according to the DeMoivre-Laplace theorem. It is easy to show that the 
parameters of the ‘sampled’ and ‘un-sampled’ normal distributions are related as follows: 

  ;  )1(222  ; 
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(#50) According to the above formula, the normal distribution can broaden considerably as 
a result of Bernoulli sampling. Referring to the above example, this means that the resolution 
of scintillation detectors is limited (among others) by the fact that typically only 1 ‘visible’ 
photon out of 10 produces a photoelectron at the photocathode. In the case of the NaI(Tl) 
scintillator, moreover, there is also a previous Bernoulli sampling, i.e. only one excitation out 
of three will produce a photon that is suitable for the production of photoelectrons at all. The 
fact that the number of excitations (occurring, e.g., due to the absorption of a gamma photon) 
has a normal distribution will be shown in the frame of the renewal process. 
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3.7. The 2 distribution: 2(k) 
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Interpretation. Let Z1, Z2, … Zk be a sequence of independent N(0, 1) random variables. 
Then the sum of squares Z1

2+Z2
2+…+Zk

2 produces a random variable having a 2 distribution 
with k degrees of freedom—in short: 2(k) distribution. 

(#51) If Y1, Y2, … Yk are a sequence of independent random variables having the same 
N(,  2) distribution with exactly known expected value and variance, then the sum of 
squares of the standardized variables will have a 2(k) distribution. 

(#52) Continuing the previous remark: If  is not known, and therefore it is replaced by the 
average Y = (Y1+Y2+…+Yk)/k when forming the standardized variables, then the sum of 
squares of the standardized variables will have a 2(k−1) distribution. 

(#53) If Y1, Y2, … Yk are a sequence of independent random variables which have N(i, i
2) 

normal distributions (i = 1, 2, …, k) with known expected values and variances, then the sum 
of squares of the standardized variables will have a 2(k) distribution. 

(#54) Continuing the previous remark: Suppose that there is a model function 
(x) = (x b1, b2, … bn) which is linear in all of its n parameters (b1, b2, … bn) and that model 
function (now: fitting function) produces the expected values i (i = 1, 2, … k) whenever the 
parameter vector b is set to the value b = a: 

 ),,;( 21 nii aaax   . (97) 

Let us consider now the sum of squares 
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Suppose that the parameter values naaa ˆ,ˆ,ˆ 21   minimize the above sum. Then the 

minimized sum of squares 
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has a 2(k−n) distribution (Press et al. 1999). 
(#55) Continuing the previous remark: According to remark (#53) the sum of squares taken 

at the parameter values a1, a2, … an would have a 2(k) distribution because in this case the 
‘exact’ expected values (i) would show up in the sum. We stress this point because we will 
see at the evaluation of nuclear spectra that the values naaa ˆ,ˆ,ˆ 21   are the maximum 



Sándor Nagy: Stochastics and Nuclear Measurements ln e

 

45  

likelihood estimates of the ‘exact’ values a1, a2, … an. Therefore one might expect that the 
relation of â  to the concrete measured spectrum is the same as that of the parameter vector a 
which it estimates. Well, the decrease of the degree of freedom indicates that this assumption 
is false. The reason is that minimization tends to divert the estimated values from the ‘exact’ 
parameter values so that they can attribute the largest possible likelihood to the concrete 
spectrum. And this will be so even if the concrete spectrum has a rather low likelihood when 
calculated with the ‘exact’ values of the parameters. 

(#56) The symbol (k/2) showing up in the density function denotes the complete gamma 
function. This is not by chance because the 2 distribution is actually a special case of the 
gamma distribution. (Looking at the density function fk, we can easily recognize it as the 
density function of the  (k/2, 1/2) gamma distribution. The characteristic functions are still 
easier to compare.) 

(#57) Note that when the degree of freedom (k) is large, then the expected value is 
practically equal to the mode, i.e. the expected value doubles as the ‘most probable’13 value. 
When evaluating nuclear spectra, 2 distributions with about 2000 degrees of freedom quite 
often occur (2048-channel spectra). In such cases the relative deviation is about 3%, i.e. the 
value of the 2(2000) random variable is most probably 2000  3% (2000  60). For more 
detail see the next remark. (The p-quantiles for 2 distributions 2(k) with degree of freedom 
1  k  30 can be found in Table 4.) 

 

FIGURE 17. The 2(k) distribution can be fairly well approximated with the N(k, 2k) distribution for as 
low a degree of freedom as k = 50. 

 

3.7.1. Properties 

Normal approximation. It follows from the interpretation as well as from the central limit 
theorem that for large enough values of k (k  30) the 2(k) distribution can be approximated 
with the N(k, 2k) normal distribution (see FIGURE 17). 

                                                           
13 The reason for the quotation marks is that with continuous distributions any x value has 0 probability. What 
this statement really means is that the probability dP = f (x)dx is at its maximum (dx is constant). 
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(#58) Continuing the previous remark: According to the properties of the normal 
distribution (see Table 3), the value of the 2(2000) random variable will be 2000  3% 
(2000  60) in 68% of the cases, 2000  6% (2000  120) in 95% of the cases, and 2000  9% 
(2000  180) in 99.7% of the cases (i.e. nearly always). 

(#59) The relative 2 is the scaled-down version of the 2(k) random variable with the 
scaling factor 1/k. Consequently, both the expected value and the standard deviation decrease 
by the same factor 1/k resulting in rel = 1 and rel = k/2 , respectively. Continuing the 
previous remark: this means that the value of the relative 2 will be 1  0.03 in 68% of the 
cases, 1  0.06 in 95% of the cases, and 1  0.09 in 99.7% of the cases (i.e. nearly always). 
Relative 2 values out of this range are to be considered therefore with suspicion. (Of course, 
if k is smaller, then the error range is broader.) 

Addition theorem. If X1 and X2 are independent random variables having 2 distributions 
with k1 and k2 degrees of freedom, respectively, then the sum X = X1+X2 has a 2 distribution 
with k1+k2 degrees of freedom. 
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3.8. Cauchy distribution: C(m, ) 

Density function: ........................................ 2
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Characteristic function: ............................ )(iexp)( umuu    

Expected value, variance, standard deviation: ............. 
Median, mode, center of symmetry: ..............................m 
Full width at half maximum (FWHM), interquartile range: 2 
Point of inflection of the density function: .................... 3/m  

 
All of the distributions mentioned so far lie within the range of attraction of normal 

distribution, i.e. the central limit theorem is valid for distributions that are quite dissimilar to 
the normal distribution such as the discrete Bernoulli distribution and the asymmetric 
exponential distribution. The Cauchy distribution presented below is, on the contrary, very 
similar in shape to the normal distribution (see FIGURE 18), but it has neither an expected 
value, nor a (finite) variance, and therefore is exempt from the rule. 

 

FIGURE 18. The density function of the C(0, 1) Cauchy distribution (thick red line, also called 
Lorentzian curve) compared with different Gaussians. The green and turquoise curves indicate normal 

density functions (the area under each curve is 1). In one case the height (hC), in the other case the 
width (C) is fixed to be equal with that of the Lorentzian. The thicker blue curve shows a Gaussian 

having the same height and width as the Lorentzian (C, hC). (With both parameters fixed, the Gaussian 
could not be normalized. Thus the area under the curve is 0.678 this time.) The difference between the 
distributions is quite obvious here: the Lorentzian approaches 0 much more slowly than the Gaussian, 
which is in accordance with the nonexistence of the expected value and the variance in the case of the 

Cauchy distribution. 
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Interpretation. Let  be a random variable uniformly distributed in the interval 
)2/π,2/π( . Then the random variable 

 ΘmY tan  (100) 

has a C(m, ) Cauchy distribution. In other words: let us consider the xy-plane and two lines—
one (line 1) passing through the origin and another (line 2) parallel to the y-axis and 
intersecting the x-axis at the point x = 1. Let us spin line 1 around the origin at constant 
angular velocity. Let us measure the y-coordinate of the intersection of lines 1 and 2 at random 
moments. The Y values obtained in this way will have a C(0, 1) distribution (Hogg and Tanis 
1988). 

 (#60) Using the above interpretation, it is easy to convert uniformly distributed 
)2/π,2/π(U random numbers to random numbers with Cauchy distribution. Such a 

simulated sequence (200 data) is shown in FIGURE 19, together with as many normally 
distributed random numbers having the same FWHM. Note that all of the normal random 
numbers lie within a few FWHMs from the origin. The Cauchy-type random numbers, on the 
other hand, behave in a much more disorderly way, i.e. there are quite a number of points that 
are way out of the same range. 

(#61) Another possibility for interpretation (and simulation) is provided by the formula 
X = Y0/Y1, where Y0 and Y1 are independent random numbers/variables with N(0, 1) 
distribution. This transformation results in C(0, 1) distribution. The recipe is based on the fact 
that the Cauchy distribution can be considered as a special case of the (Student’s) t 
distribution (not discussed here). 

 

FIGURE 19. Comparison of normal random numbers with random numbers having Cauchy distribution. 
Both distributions have the same halfwidth (FWHM = 2). Note that some of the Cauchy-type random 
numbers are as large as 500 in this particular sequence. On the other hand, all of the normal random 

numbers lie in the narrow range of 6 = 5 determined by the 0  3 limits. 



Sándor Nagy: Stochastics and Nuclear Measurements ln e

 

49  

(#62) In Mössbauer spectroscopy, the density function of Cauchy distribution is called a 
Lorentzian curve14. This curve is characteristic of the energy uncertainty of excited (nuclear) 
states, which follows from the fact that excited states have exponential distribution with a 
finite mean life . The natural linewidth , i.e. the FWHM of the Lorentzian energy density, 
is twice of the parameter  ( = 2). 

(#63) The lack of expected value and variance can be quite a shock for those who had 
been familiar with the physical meaning of the Lorentzian curve but learned about this 
mathematical ‘defectiveness’ at a later date.15 This is so, because the nonexistence of these 
parameters makes them believe that the distribution is hopelessly smeared over the energy 
axis. However, this is not the case, which is quite clear from the viewpoint of physics, because 
otherwise no sharp spectrum lines could exist. The expected value (and the variance built on 
that) fails, because the ‘central tendency’ of the distribution is simply not sufficient for the 
convergence of the respective formula(e)16. Other parameters describing the ‘location’ and 
‘dispersion’ of the distribution (mode, interquartile range, etc.) still may and actually do work. 

(#64) Continuing remarks (#62)-(#63): The formula   = ћ is often used for the estimation 
of the natural linewidth. This formula is sometimes interpreted as the time-energy equivalent 
of the Heisenberg relation, where  is the uncertainty (standard deviation) of the lifetime and 
 (FWHM) is that of the energy state. We should point out, however, that while  can play the 
assigned role (because the standard deviation is equal to the expected value in the case of the 
exponential distribution), the quantity  cannot be interpreted as standard deviation, since 
the Cauchy distribution does not have any. 

Nevertheless the formula works not only in theory but also in practice as is proven for 30 or 
so nuclides for which the values of  and  have been determined by independent methods 
(Belgya et al. 1993). 

 

3.8.1. Properties 

Standardization. The rescaling and shifting of Cauchy distribution results in another 
Cauchy distribution. Therefore the following transformation of the random variable X having 
a C(m, ) Cauchy distribution 

 


mX
Y


  (101) 

generates a random variable Y with C(0, 1) Cauchy distribution. 
(#65) Note that in the above formula, the ‘substitutes’ of the expected value and standard 

deviation appear as location and dispersion parameters. 
Addition theorem. If X1 and X2 are independent random variables with C(m1, 1) and 

C(m2, 2) Cauchy distribution, respectively, then the random variable X = X1+X2 has a 
C(m1+m2, 1+2) Cauchy distribution. 

(#66) In Mössbauer spectroscopy, the peak-shape of the transmission spectrum 
(measured with a thin absorber, see FIGURE 22) is described as the convolution of the 
Lorentzians characteristic of the source and the absorber. According to the addition theorem, 

                                                           
14 In particle physics, the same function is called the Breit–Wigner curve (Lyons 1986).  
15 The confrontation with this defectiveness often fails to occur. For instance, Bevington, in his often-cited work 
(Bevington 1969), writes about Cauchy distribution as if it had an expected value. 
16 Note that the density function is asymptotically proportional to x−2, and therefore the integrand in the expected 
value formula is proportional to x−1, hence the integral itself ( ln x) is boundless. 
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the result of such a convolution will be another Lorentzian with a halfwidth equal to the sum 
of both halfwidths. In other words, in this case, the FWHM is twice of the natural linewidth . 

(#67) Note that in the case of the Cauchy distribution, the scaling-up of the random 
variable with the factor 2 leads to the same result as the addition of two independent random 
variables with the same distribution (i.e. both parameters m and  will double). In the case of 
distributions ‘more normal’ than the Cauchy distribution, on the other hand, the width will 
only increase by the factor 2  when two like (although independent) variables are added up. 
As shown before, this is due to the ‘Pythagorean theorem’ of the standard deviations, by 
which we mean that it is the variances that add up rather than the standard deviations 
themselves. 
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4. Applications of Stochastic Processes 
In this chapter we will give a few examples to show the applicability of stochastic 

processes in nuclear science. We should stress that our goal is to present illustrations rather 
than to derive formulae that serve as the final solutions for the problems cited. We hope that 
reading the next couple of pages can help to arouse interest in this field. 

 

4.1. Renewal processes 

The ‘prototype’ of the renewal process is the following. Consider a part of equipment the 
lifetime of which, T, is a random variable with expected value  and variance  2. The first 
such part started to work at time 0. Having broken down at time T1, it was promptly replaced 
with a new part, which was working for a period T2, i.e. it broke down at time T1+T2, and so 
on. The nth renewal took place at time: Sn = T1+…+Tn. The renewal process Nt counts the 
number of renewals occurring in the time interval [0, t], i.e.: 

 Nt = n, if Sn  t  Sn+1, where n = 0, 1, 2, … (102) 

We cite two important theorems concerning the above process: 
 

Renewal theorem. E(Nt)  t/, if t is large enough. (This is in agreement with the expectation 
based on common sense: If a part works for a period  on an average, then we will need about 
t/ parts over the total operating period t.) 

  
Central limit theorem for renewals. Nt is asymptotically normal with N(t/, t 2/ 3) 
distribution. 

 

4.1.1. The Poisson process as renewal 

It is not difficult to recognize the renewal process in the Poisson process discussed earlier, 
where the random variable T had a  (1,  ) exponential distribution, as a consequence of 
which Nt (or, with the earlier notation: X ) turned out to have a  ( t) Poisson distribution. 
The Poisson process represents one of the few cases where the distribution of the renewal 
process is known for any value of t. The importance of the central limit theorem for 
renewals lies in the very fact that, for large enough values of t, we can count on normal 
distribution even if we do not know the exact distribution of Nt. The validity of the theorem 
can be easily checked in this particular case, since by substitution we get the well-known 
result that for large enough  we can use the approximation ),()(  NΠ  . 

(#68) The fact that the Poisson process can be interpreted as a renewal makes it possible to 
generate random numbers with Poisson distribution using exponentially distributed random 
numbers (Goodman 1988, Lux and Koblinger 1991).17 If, namely, T1, T2, … are a sequence of 
random numbers/variables with a  (1,  ) exponential distribution, then the random 
number/variable N determined by the condition 

 T1 + T2 +…+ TN  t  T1 + T2 +…+ TN + TN +1 (103) 

will have a  ( t ) Poisson distribution according to inequality (102). 
                                                           

17 For the generation of exponentially distributed random numbers see remark (#30). 
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(#69) The discrete equivalent of the Poisson process is related to a series of Bernoulli 
trials, in which case the individual trials (e.g., coin tosses) can be assigned to individual 
discrete moments (i.e. to the serial number of the toss, n). It is clear that the process X(n) has a 
B(n, p) binomial distribution—the distribution characteristic of the number of heads turning 
up in a series of n tosses. 

 

4.1.2. Consideration of dead time 

The Poisson process is connected with a (non-existent) type of particle/signal detection, 
when the detecting system is promptly able to deal with a new signal after having received the 
previous one. In reality, however, any detecting system can only deal with a new signal after a 
certain period of time i called the dead time. During this period (which should be treated as 
a random variable in general), the detecting system is recovering (e.g. GM counter), or it is 
busy with signal processing (e.g. pulse height analysis). The dead time is followed by the 
waiting time Ti having exponential distribution, the same as the one discussed at the Poisson 
process (see Eq. (89)), with the same mean frequency . (We should again refer to the 
memorylessness of the exponential distribution.) The total waiting time (including the dead 
time) connected with the ith (actually detected) signal therefore is Zi = i + Ti. Thus the nth 
signal is detected at the moment Sn = Z1+…+Zn. 

Considering the independence of i and Ti, as well as that the distributions of both i and 
Ti are concentrated to the half-line t > 0, the distribution function of Zi is given by the 
following convolution (see Eq. (51)): 

 xxzGxxhxzGzhGzF
z

x
z

de)(d)()()()(
00
     

where G is the distribution function of i, and h is the (exponential) density function of Ti. 
The subscripts have been omitted, because the is have the same distribution and so do the Tis 
(separately). The density function of Zi ( f ) can be obtained by differentiation. The density 
function of Sn ( fn ) can be obtained by forming the nth convolution power of f = F : 

 )(...)( zffzfn    

In particular, if the dead time is constant ( ), then f =  exp[− (t −  )], which is the 
exponential density function shifted to  (t >  ). Therefore Sn has a shifted gamma 
distribution with the following density function: 
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The following results hold even if the concrete distribution of the process Nt is unknown: 
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where  is the mean dead time, and  is the mean signal frequency (mean count rate with 
zero dead time). If the dead time is constant, the latter equation becomes simpler: 

 
2

2 1


  . (106) 

The mean count rate in the case of constant dead time  is: 

 


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1

1
. (107) 

Using this, we can easily calculate the mean signal frequency  (i.e. the mean count rate 
without dead time) from the measured value of the mean count rate  (i.e. the apparent mean 
signal frequency) provided that  is known: 

 





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. (108) 

According to the central limit theorem for renewals, Nt is asymptotically N(t/, t 2/ 3) 
normal. In the case of long enough counting times and constant dead time, therefore, the 
expected value and the variance of the counts are: 

 ttNE t 






1

)( , (109) 

 ttND t  

 2

3
2 )1(

)1(
)( 


 . (110) 

(#70) It follows from above result that: 

 )()()1()( 22
ttt NENEND    (111) 

where the equals sign only holds for   << 1. Thus, in the case of measured counts, the 
Poisson approximation (when the variance is taken to be equal to the expected value) tends 
to overestimate the actual standard deviation. 

(#71) The product  represents the fraction of the counting time t that is  
‘covered’ by the dead-time intervals associated with the individual measured signals. 
The percentage of dead time displayed by some detecting systems is therefore equal to 
100. 

 

4.1.3. The ‘primeval’ shape of the photoelectric peak 

The initial stage of the detection is the transferring of the energy of a radiation particle—or 
a gamma photon—to the substance of the detector. Owing to this process ionized/excited 
states are produced, the number of which is proportional to the absorbed energy, serving as a 
basis for the energy determination of the detected particle. 

The renewal story can also be recounted with the following exchange of roles: t  E, 
Nt  NE, Ti  i,   ,,   . Consider, therefore, a gamma photon, the energy (E) of 
which breaks up to random portions (i) while it is transferred to the detector crystal following 
photoelectric effect. The renewal process NE now counts the number of portions—a random 
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variable—to which the energy of the photon has happened to split. Each energy portion is 
spent on the production of one charge carrier (or one excited state relevant from the viewpoint 
of detection). Therefore NE also means the number of charge carriers produced by the detected 
photon, which—assuming linear amplification—will be proportional to the pulse height. If 
further statistical effects can be neglected, then the density function of NE will be 
characteristic of the pulse height distribution as well, which has a Gaussian shape according to 
experience. 

The distribution of the i-values is concentrated to the energy range (V,  E), where V is the 
minimum of energy (ionization potential), which is just enough for the production of one 
charge carrier in the given detector substance. Further characteristic parameters of the 
distribution are: i  , the mean energy spent on the production of one charge 

carrier/excited state, as well as rel, the relative deviation of the i-values. 
According to the central limit theorem of renewals, NE will be asymptotically normal with 

the following parameters: 

 
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The shape of the photoelectric peak is therefore determined by the density function of the 
above normal distribution (i.e. by a Gaussian curve), the mode/expected value (MAX) and 
halfwidth (FWHM) of which are: 

 

E
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
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E

rel,2ln22FWHM  . (113) 

Thus the position of the maximum is proportional to the photon energy E, and the low-
energy peaks are narrower than the high-energy peaks. We can also see that the relative peak-
width is inversely proportional to the square root of the energy: 

 


 
E

rel,rel 2ln22
MAX

FWHM
FWHM  . (114) 

The above formulae show that this simple stochastic model not only explains the shape of 
the photoelectric peak, but also predicts that the smaller is the average energy spent on the 
production of one charge carrier/excited state in a detector, the better is its energy resolution. 

 

4.1.4. Statistical effects smearing the photoelectric peak 

We have assumed above that there are no statistical effects at later stages of pulse 
formation that could change the shape of the photoelectric peak. However, such effects do 
exist. Let us consider the scintillation detectors, for instance, which waste much of the 
potential of energy resolution hidden in the ‘primeval’ shape of the photoelectric peak. 

In the case of scintillation detectors, the production of excited states is practically 
instantaneous in comparison with the time scale of de-excitation. The excited states are 
characterized by the same exponential-type lifetime distribution as the radioactive atoms. A 
large number of excited states start to ‘decay’ at the same moment (t = 0), as a result of which 
visible photons are formed (see FIGURE 20). 

The temporal density of photons as a function of time—in other words: the shape of the 
light pulse—shows the characteristic features of the exponential law of decay. If the 
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electronics does not mix up the elementary processes too much, then the shape of the light 
pulse will be reflected in the shape of the voltage pulse as well, the latter being the object of 
pulse height analysis. All in all, the pulse height of the detector signal will be determined by 
the number of photons emitted between t = 0 (the moment when the excited states were 
formed) and a moment a little later: t = 0 + t = t. (The length of t depends on the details of 
the signal processing/pulse-height analysis, however it is surely shorter than the mean life  of 
the excited states.) The number of photons responsible for the pulse height is determined 
therefore by the B(NE, exp(-t / )) binomial distribution for any value of NE. Since the 
‘primeval’ shape is very narrow, NE can be replaced by its expected value (MAX). If the 
binomial expected value MAX  exp(-t / ) and the variance MAX  exp(-t / )  [1 - exp(-
t / )] are not too small, then the binomial distribution can be approximated with normal. 

 

FIGURE 20. Fine structure of the detector signal of 0.1 mm NaI(Tl) scintillator at gamma energy of 
14.4 keV. The high time-resolution of the digital oscilloscope helps to visualize the elementary 

processes that make up the signal. The steep rise of the pulse is an indication of the promptness of the 
formation of the excited states. The individual ‘hairs’ sticking out from the fuzzy contour represent 

photoelectrons (or rather the results of cascades started by these in the multiplier) produced by 
individual visible photons at the photocathode. The multitude of partly merging elementary pulses 

outlines the exponential law of the ‘decay’ of excited states. 

 
Hence, the number of photons determining the pulse height is normally distributed: 
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where A and B are constants. Note that the result is another Gaussian that is considerably 
broader that the ‘primeval’ one, but otherwise has the same properties, the most important 
being the proportionality between pulse height (Ampl.) and energy: 

 

E

 Ampl.height pulse . (116) 

From now on, we will only follow the fate of the photons characterized by the above 
distribution. The production of photoelectrons at the photocathode can be described by 
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Bernoulli sampling (see at the normal distribution). Bernoulli sampling will broaden the 
distribution (in the relative sense), however, it will not lead out from the family of normal 
distributions: 
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The electron multiplier will further modify the shape of the peak (see at the branching 
processes), but, fortunately, the proportionality between pulse height and energy will not 
suffer. 

 

4.2. Markov chains 

A Markov chain is a stochastic process defined by the condition: 

   )(),,,,( 11112211   nnnnnn xXbXaPxXxXxXbXaP   (118) 

which means that the current outlook of such a process is determined by the latest information 
to such an extent that no earlier information can add anything to it. 

 

4.2.1. Branching processes 

The story of the branching processes is the following. Consider an entity (0th generation), 
which produces X1 identical offspring in one single reproductive cycle (1st generation). The 
offspring of the nth generation constitute the (n+1)th generation. The entities belonging to 
each generation proliferate independently of each other and of their predecessors according to 
the same distribution. We wish to follow Xn, the population of the subsequent generations of 
entities. Such entities can be, e.g. neutrons multiplied by a chain reaction or electrons 
‘breeding’ on the dynodes of a multiplier. 

The X1 is a discrete random variable that can assume the values k = 0, 1, 2… with different 
probabilities P(X1 = k) = pk. Let  denote the expected value, and  2 the variance of the 
distribution. Let G(s)  G1(s) be the generating function of the distribution: 
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Then the generating functions of the subsequent generations can be calculated from the 
following recursion formula (Feller 1968): 

 ))(()(1 sGGsG nn  . (120) 

The expected value and the variance of the branching process are (Feller 1968): 

 n
nXE )(    2132222 )()(    nnn

nXD  . (121) 

Note that the result obtained for the expected value is in accordance with the common-
sense expectation. 

(#72) FIGURE 21 shows a sequence of distributions resulted from such a calculation. The 
model can represent, e.g., a photomultiplier, the dynodes of which ‘double’ the incident 
electrons with a probability of 50%, i.e. half of the electrons have 2 offspring, while the other 
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half only 1. Thus the mean multiplication factor of the dynodes is  = 3/2, with a standard 
deviation of  = 1/2. 

According to Eq. (121), the relative deviation of multiplication is: 

 121
rel 1
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)(
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n
n XE
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  . (122) 

For a large number of dynodes, the relative deviation approaches the following limit: 
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(#73) Continuing the previous remark: In the case of one stage, the relative deviation is 
about 33%. By increasing the number of dynodes, the relative deviation increases 
asymptotically to about 58%. The above formula reveals, however, that by increasing the 
(mean) multiplication factor of the dynode (), the relative deviation becomes smaller (for the 
same  ). If, e.g., the dynodes triple/quadruple the incident electron with equal probability 
instead of doubling it (i.e.  remains 1/2, while  increases from 3/2 to 7/2), then the 
asymptotic value of the relative deviation will decrease to about 17%. 

(#74) We should stress that multiplication goes by electrons. When, e.g., the photocathode 
emits N electrons as a result of a light pulse, then each electron will be multiplied to a 
different extent by the dynodes. The total number of electrons collected by the anode is 
obtained by summation: 

 
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
N

i
inN XΣ

1
, . (124) 

Note that we are dealing with a random sum here. According to the results discussed at 
renewals (see Eq. (117)), the random variable N is asymptotically normal with the following 
parameters: 
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FIGURE 21. Distributions of the multiplication by a ‘photomultiplier’ calculated for 1, 2, 3, and 4 
dynodes. 

According to Eq. (55), the expected value and the variance of N are as follows: 

 


 EE
aΣE n

N )( , (126) 
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Thus the expected value of the pulse height remains proportional to the energy even after 
the photomultiplier. (The peak-width also remains proportional to the square root of the 
energy.) 
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5. Fitting Nuclear Spectra 
In this chapter we will discuss the evaluation of certain parameterized data sequences that 

we call nuclear spectra. For a more general treatment of similar problems we refer to Press 
et al. 1999. 

 

FIGURE 22. An example for a nuclear spectrum. The main graph shows a single-peak Mössbauer 
spectrum ‘measured’ at transmission geometry. Such a spectrum can be fitted with a Lorentzian curve 

(blue line), whose shape is identical with the density function of a Cauchy distribution. Due to 
standardization, the tick distance on the horizontal axis is half of the FWHM of the Lorentzian (γ). As 

we have mentioned in remark (#66), FWHM/2 = γ gives the natural line width Γ provided that the 
absorber is ideally thin. On the other hand, the vertical scattering of the counts (red dots) is 

characterized by the normal distribution. The colored graph on the left, e.g., shows the normal density 
function belonging to the baseline (μ∞). The color code is explained by FIGURE 2. On the vertical axis 

the distance between the ticks equals to . 

 

5.1. Spectra, fitting, model functions 

Spectrum. A spectrum is a set of data pairs (spectrum points): 

 kiYx ii ,2,1),(   (128) 

where xi is the exact value of some independent variable x (one of a number of set values 
chosen by the spectroscopist), and the corresponding value of the dependent variable Yi is 
considered as a random variable. We will assume that the expected value i of Yi is provided 
by the appropriate member of a parameterized family of functions 

  bb);(x  (129) 

called the model functions. (The subscript above is to remind that there is an element in the 
set of functions {...}b for each different value of b.) 
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The vector 

 ),,( 21 nbbb b  (130) 

is called the vector of the fitting parameters18. 
Let a denote that particular choice of the parameter vector b at which the fitting actually 

takes place, i.e. for which: 

 kixYE iii ,2,1);()(  a . (131) 

The function determined by a: 

 );()( axx    (132) 

will be referred to as the fitting function. The purpose of fitting is to give the best possible 
estimate for the parameter vector a on the basis of the concrete spectrum. The estimate of a 
will be denoted by â . 

Nuclear spectra. Before sketching out the solution for the fitting problem, we restrict our 
attention to a special class of spectra called nuclear spectra, in the case of which the Yis are 
counts, for which the Poisson approximation and the normal approximation equally hold. In 
other words, we will concentrate on spectra for which the Yi-values have N(i, i

2) 
distributions with i

2 = i as a heritage of the Poisson distribution. (See FIGURE 22.) 
 

5.2. The maximum likelihood principle 

The maximum likelihood principle is based on the following train of thought. Suppose that 
the shape of the model function is exactly known (in principle), but the exact value of the 
parameter vector a (providing the fitting function common to all spectra that could be 
measured under the given conditions) remains hidden from us. We can only state with 
certainty (because of physical considerations) that such a parameter vector does exist. The 
measured spectrum 

  kiYxS ii ,2,1),()( 00 a  (133) 

can therefore be considered as a concrete member—realized by a concrete measurement—of 
the manifold of spectra {S (a)} the elements of which are characterized by the same ‘exact’ 
parameter vector a. The different elements of {S (a)} are not equally likely to occur in an 
actual measurement. Since the spectrum points have normal distribution and they represent 
independent random variables, we can assign the following ‘probability’—or rather: 
likelihood—to the different spectra: 

 k
i

k

i i

ii

i

YYY
xY

P ))(Δ;(Δ
);(

2

1
exp

π2

1
);(

1

2

a
a

a L
































 


 



  (134) 

where L (Yi; a) is called the likelihood function that can be considered as a k dimensional 
density function characterizing the ‘probability’ of the spectrum in question (Orear 1987): 

                                                           
18 See the example mentioned in remark (#35). 
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Note that the factor Y was needed in Eq. (134) so that we could convert the normal 
density function to probability. Now if we wanted to take a guess at the ‘position’ of the 
measured spectrum S0(a) in the manifold {S (a)} , then the most sensible thing to do would 
be to look for it around the maximum of the above likelihood. In other words—like other 
experimenters—we trust that the single result of our measurement (the spectrum measured 
maybe for several days) exemplifies a typical case rather than a rare and extreme one: 

 );(max);0( aa  PP  . (136) 

Laying this down, we can continue arguing like this. Since we would like to believe that the 
measured spectrum S0(a) is a likely realization associated with the ‘real’—alas, unknown—
parameter vector a, the best thing that we can do is select the estimate â  so that it (of all the 
possible values of the parameter vector b) assigns the greatest likelihood to the measured 
spectrum: 

 );0(max)ˆ;0( ba b PP  . (137) 

The above maximum condition is an expression of the maximum likelihood principle. 
Note that the maximum likelihood principle—rationality aside—does not provide a guarantee 
that the ‘real’ a will be found, since it is based on belief rather than on strict mathematical 
foundations. However, the results shown below can be interpreted mathematically as well, 
speaking for the ‘strength’ of the principle. 

 

5.3. Weighted least squares as a maximum likelihood method 

Because of the monotony of the logarithmic function, the above maximum condition can be 
converted to the following minimum condition: 

 ));0(log(min)ˆ;0(log ba b PP  . (138) 

In the concrete situation this condition provides the estimate â  as the solution of the  
 

following minimization: 
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 (139) 

Note that the above sum of squares is proportional to the weighted average of the squared 
deviation from the expected value as defined by Eq. (36). 

There are commercial programs for solving the above type of minimization. They provide 
not only the estimates of the unknown parameters but also their variances and the correlation 
coefficients between them. Instead of going into details of such evaluations, we only make a 
couple of remarks concerning the minimum of 2 that is characteristic of the goodness of fit. 
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(#75) The notation 2 is not accidental. We have seen at the 2 distribution that when the 
model function is linear in the fitting parameters, then the minimized sum of squares has a 
2(k−n) distribution, i.e. the goodness of fit can be judged accordingly. 

(#76) If the model function is not linear in all of the parameters, then, perhaps, it can be 
linearized by a transformation or using a power series. After linearization, the sum of squares 
will certainly have a 2 distribution with some degree of freedom. In order to find the 
minimum, however, the model function need not be linearized (Press et al. 1999). The 
possibility of linearization is only necessary for the declaration of the ‘competence’ of the 2 
distribution as a goodness-of-fit measure, as well as for finding the value of n pointing to the 
concrete 2 distribution ‘in charge’. Considering that the value of k can be as large as several 
thousand in the case of nuclear spectra, the value of n (which is much less than k) does not 
matter too much, because the sum of squares will approximately have a 
2(k−n)  2(k)  N(k, 2k) distribution anyway. 

(#77) Some types of linearization require the (non-linear) transformation of the measured 
spectrum. As an example, we mention the logarithmic conversion of decay data for the 
determination of the decay constant. Logarithmic conversion spoils the initially normal 
distribution of the spectrum points, thus breaking the connection with the 2 distribution as a 
goodness-of-fit measure. 

 

5.4. Weighted least squares method in nuclear spectroscopy 

We have not yet utilized that i
2 = i for nuclear spectra. Before including this relationship 

in the least squares method, we will consider a very simple nuclear spectrum consisting of the 
counts measured with a long-lived radionuclide for equal periods of time. The model function 
is obviously very simple in this case. It only contains one single parameter representing the 
common expected value of the measured counts. The minimization problem therefore can be 
expressed like this: 
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where â  is the estimate of the constant  = E(Yi). In this particular case there are  
three—equally sensible—choices for giving the value of i

2. The question is, whether or not 
they lead to the same estimate. 

Case 1: i
2 = 2 = constant. We have only used that the points have the same variance: 
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Case 2: i
2 = 2 =   â . Here, we have utilized that we are dealing with a nuclear 

spectrum, and also that â  is the estimate of : 
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Case 3: i
2 = 2 =   Yi. Here, we have utilized that we are dealing with a nuclear 

spectrum, and also that, in the case of Poisson distribution, a single measured value is a fair 
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estimate of the expected value19, provided that the measured (and thus the expected) value is 
large enough: 

 






k

i i

i

Y

aY

1

2
2 minimum

)ˆ( . (143) 

Differentiating the above expressions with respect to â , we find that each minimum 
problem has a different solution. The result will always be some type of an average of the Yi-
values, however, in case 1 it is the arithmetical mean (i.e. the sample mean, see Eq. (29)), in 
case 2 the harmonic mean (see Eq. (19)), while in case 3 the root mean square (see 
Eq. (17)), what we get. 

And now let us return to the problem in general. However tempting case 1 seems to be 
(note that it proved to be related to the sample mean that is both the unbiased estimate of the 
expected value and, as we have just seen, its maximum likelihood estimate), it cannot serve as 
a general model, because the model function is not usually constant and therefore Eq. (141) 
does not represent a maximum likelihood condition in general. 

Although case 2 conveys the nuclear character of the spectra quite accurately, it has two 
major drawbacks. First, the derivatives are more complicated and, second, the statistical 
interpretation is more difficult. Consider, e.g. that all the advantages of a linear model function 
disappear as soon as that same model function appears in the denominator as well (see 
Eq. (142)). 

In case 3 the nuclear character is only expressed approximately, but the approximates (Yi) 
can be considered as constants from the viewpoint of differentiation and therefore the 
following minimum condition/merit function is accepted in the practice of spectrum 
evaluation: 
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As regards the relationship between 2-values and confidence intervals we refer to the 
excellent literature available (Press et al. 1999) and we content ourselves with a few remarks 
only. 

(#78) For rather obvious reasons, the following relationships hold between the above-
mentioned means: 

 harmonic mean ≤ sample mean ≤ root mean square (145) 

It is reassuring, however, that in the case of the Poisson distribution the actual difference 
between the above ‘averages’ is relatively small. It is easy to check (e.g. with random numbers 
of  () distribution) that the difference—varying  between 102 - 106 and ‘averaging’ ten 
data at a time—does not usually exceed 1. On the other hand, for  = 102, 104, and 106 the 
standard deviations are 10, 100, and 1000, respectively, showing that the three methods of 
‘averaging’ are practically equivalent, because the standard deviations are much larger than 
the difference between them. 

(#79) In spite of the fact that the 2-value is the result of minimization, the same ‘protocol’ 
should be followed as usual, i.e. when the confidence/acceptability of an estimate is judged by 
using any other distribution as a measure. Therefore, the fit giving the smallest 2-value is not 
necessarily the best. The best fit is the one whose 2-value is nearest to the expected value 
(determined by the degrees of freedom) of the corresponding 2 distribution. It is true, 

                                                           
19 See remark (#24). 
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however, that in 99 cases out of 100 we are unsatisfied with the fit because we find the 2-
value too large. 

One possible reason for this can be that the model function used is unsatisfactory. It is a 
serious error, e.g. when the dimension of the vector b is taken too small (this happens, e.g. 
when we try to fit a Mössbauer spectrum with fewer peaks than we should). Another source of 
such error can be that the shape of the elementary model function is imperfect (e.g. the peaks 
of a Mössbauer spectrum cannot always be described perfectly by Lorentzians). 

Spectrum points that are way out of range (mainly: ‘dropped’ points) can also lead astray 
the fitting process. 

(#80) If the relative 2 is too small, it can be an indication that the fitting program tends to 
overestimate the degrees of freedom. This can happen, e.g., when the model function is not 
linear in each of the parameters, and the degree of freedom is calculated (according to the 
general practice) simply by subtracting the number of fitted parameters from the number of 
spectrum points. 

Too small (i.e. too good) a 2 can be obtained, when the dead time is so large that the 
Poisson approximation built into the merit function of Eq. (144) overestimates the variance in 
the denominator. In such a case, we get a more realistic result, if—on the basis of Eq. (111)—
we divide the calculated 2-value by (1−)2, where  is the percentage of dead time 
divided by 100. 
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6. Summarizing Tables 
TABLE 1. Addition theorems. The addition theorems summarized below are 
only valid if the random variables X1 and X2 are independent of each other. 

Distribution of
X1 

Distribution of
X2 

Distribution of 

X1 + X2 
B(n1, p) B(n2, p) B(n1+n2, p) 
 (1)  (2)  (1+2) 
(r1,) (r2,) (r1+r2,) 

N(1, 1
2) N(2, 2

2) N(1+2, 1
2+2

2)
2(k1) 2(k2) 2(k1+k2) 

C(m1, 1) C(m2, 2) C(m1+m2, 1+2) 

 

TABLE 2. Limiting distributions. The conditions given below are practical 
substitutes for the exact limits (such as p  0 and n   in the case of the 
first row). Under the practical conditions given in the middle column, the 
limiting distribution given in the third column gives a fair approximation of 
the distribution given in the first column. 

Distribution of 
X 

Conditions Limiting distribution of 
X 

B(n, p) 
p  0.1 
n  20 

 (np) 

B(n, p) npq  6 
q ≡ (1−p) 

N(np, npq) 

 ()   20 N(, ) 
(r, ) k  30 N(r/, r/2) 
2(k) k  50 N(k,2k) 
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TABLE 3. Normal distribution 
Probabilities expressed in percent for deviations from the mean higher than 
 ± d  for the random variable X having N(, 2) normal distribution. 

d 100   dXP  d 100   dXP   

0.67449 50 2.1 3.57 
0.7 48.39 2.2 2.78 
0.8 42.37 2.3 2.14 
0.9 36.81 2.4 1.64 
1.0 31.37 2.5 1.24 
1.1 27.13 2.6 0.932 
1.2 23.01 2.7 0.693 
1.3 19.36 2.8 0.511 
1.4 16.15 2.9 0.373 
1.5 13.36 3.0 0.27 
1.6 10.96 3.5 0.0465 
1.7 8.91 4 0.00634 
1.8 7.19 5 0.0000573 
1.9 5.74 6 0.0000002 
2.0 4.55 7 0.00000000026 

 

TABLE  4. 2
 distribution 

The p-quantiles of 2(k) distributions for different degrees of freedom k  

k\p 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99 
1 0.0002 0.0039 0.0148 0.102 0.455 1.32 2.71 3.84 6.33 

5 0.554 1.15 1.61 2.67 4.35 6.63 9.24 11.1 15.1 

10 2.56 3.94 4.87 6.74 9.34 12.5 16.0 18.3 23.2 

15 5.23 7.26 8.55 11.0 14.3 18.2 22.3 25.0 30.6 

20 8.26 10.9 12.4 15.5 19.3 23.8 28.4 31.4 37.6 

25 11.5 14.6 16.5 19.9 24.3 29.3 34.4 37.7 44.3 

30 15.0 18.5 20.6 24.5 29.3 34.8 40.3 43.8 50.9 
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Distribution 
2, 44 
Bernoulli, 19 
binomial, 21 
Cauchy, 47 
exponential, 28 
gamma, 38 
Gaussian, 41 
normal, 41 
Poisson, 25 
uniform, 15 

Distribution function, 4, 6 
joint, 11 

Dynodes, 56, 57, 58 

E 
Effective means, 7 
Efficiency of detection, 22 
Empirical variance, 10 
Error calculation of the count rate, 36 
Error function (erf), 42 
Error propagation, 17 
Estimate, 9 

of mean-life, 30 
Estimation of the expected value, 9 
Estimation of variance, 10 
Expectation value, 3 
Expected value, 3 

estimation from a sample, 9 
maximum likelihood estimate of, 10 
of products/ratios, 17 

Expected value of linear combinations, 12 
Exponential density function, 29 
Exponential distribution, 28, 39 

memorylessness of, 36 
Exponential distribution function, 29 
Exponential law of radioactive decay, 31, 55 

in a binomial way, 32 
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Exponentially distributed random numbers, 29 

F 
Fitting function, 60 
FITTING NUCLEAR SPECTRA, 59 
Fitting parameters, 60 
Fourier transform, 8 
Fractile, 9 
Full width at half maximum, 9 
FWHM, 9 

G 
Gamma distribution, 38, 39 
Gaussian curve, 41 
Gaussian distribution, 41, 47 
Generating function, 8 
Goodness of fit, 61 

H 
Half-life, 29 
Halfwidth, 9 
Harmonic mean, 7, 63 
Heisenberg relation, 49 
Hypothetical decay, 37 

I 
Indefatigability, 28 
Independence, 11 
Integral distribution function, 4 
Interquantile range, 9 
Interquartile range, 9 
Inverse Fourier transform, 15 

J 
Joint density function, 11 
Joint distribution function, 11 

L 
Law of large numbers, 14 
Law of the Unconscious Statistician, 7 
Lifetime, 29 
Lifetime distribution of radionuclei, 28 
Likelihood function, 60 
Limiting distributions, 65 
Lindberg-Lévy version of the central limit theorem, 41 
Location parameters, 3 
Lorentzian curve, 49 
Lorentzian distribution, 47 

M 
Markov chains, 56 
Mass function, 3 
Mathematical expectation, 3 
Maximum likelihood estimate of the expected value, 10 

Maximum likelihood principle, 60, 61 
weighted least squares, 61 

Mean, 3 
arithmetical, 63 
harmonic, 63 

Mean absolute deviation, 9 
Mean dead time, 53 
Mean frequency, 34 

of chance coincidences, 36 
Mean life, 29 

estimation of, 30 
Mean signal frequency, 53 
Mean-life estimate, 30 
Median, 5 
Memoryless, 28 
Memorylessness of exponential distribution, 36 
Merit function, 63 
Mode, 6 
Model function, 59 
Momenta of a distribution, 7 

first and second moment, 8 
Mössbauer spectroscopy, 49 
Most probable value, 6 

N 
Natural linewidth, 49 
Neutron 

multiplied by chain reaction, 56 
Neutron flux, 4 
Neutron flux density, 4 
Normal distribution, 23, 26, 39, 41 

standard, 42 
Normal random numbers, 48 
Normalized distributions, 4 
Normalizing factor, 5 
Normally distributed random numbers, 42 
Nuclear spectra 

FITTING OF, 59 
simulation of, 42 

P 
Percentiles, 9 
Photoelectric peak 

the shape of, 53 
the smearing of, 54 

Photomultiplier, 58 
Poisson approximation, 53 
Poisson distribution, 19, 23, 25, 26 
Poisson process, 35 

as renewal, 51 
p-quantiles of 2 distributions, 66 
Probability density, 4, 5 

Q 
Quantile, 9 
Quartiles, 9 
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R 
Radioactive decay, 19 

exponential law of, 31 
Random numbers 

exponentially distributed, 29 
normally distributed, 42, 48 
with Cauchy distribution, 48 
with Poisson distribution, 51 

Random sum, 16, 57 
Random variable, 3 

integral valued, 4 
Reduced mass, 7 
Relative 2, 46 
Relative deviation, 9 
Relative width, 9 
Renewal processes, 51 
Renewal theorem, 51 
Resolution of scintillation detectors, 43 
Resolving time, 35 
rms, 7 
Root mean square, 7, 63 

S 
Sample mean, 9, 63 
Sample variance, 10 
Scaled events, 39 
Scaler signals, 39 
Scalers, 38 
Scintillation detector, 54 

resolution of, 43 
Simulation of nuclear spectra, 42 
Spectrum, 59 

Spectrum point, 4 
Standard deviation, 8 

of products/ratios, 17 
Standard normal distribution, 42 
Standard normal random variable, 41 
Standardization, 12 
Statistical samples, 6 
STOCHASTIC PROCESSES, 51 

T 
Transmission spectrum, 49 

U 
Unbiased, 9 
Uncorrelated, 11 
Uniform distribution, 15 
Unimodal distribution, 7 

V 
Variance, 8 

empirical, 10 
estimation from a sample, 10 

Variance of the sum of random variables, 12 

W 
Waiting time, 36, 39, 52 
Weighted average, 10 
Weighted least squares 

as a maximum likelihood method, 61 
in nuclear spectroscopy, 62 
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